These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 22619363)

  • 1. Physical tethering and volume exclusion determine higher-order genome organization in budding yeast.
    Tjong H; Gong K; Chen L; Alber F
    Genome Res; 2012 Jul; 22(7):1295-305. PubMed ID: 22619363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A three-dimensional model of the yeast genome.
    Duan Z; Andronescu M; Schutz K; McIlwain S; Kim YJ; Lee C; Shendure J; Fields S; Blau CA; Noble WS
    Nature; 2010 May; 465(7296):363-7. PubMed ID: 20436457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative 3D genome structure analysis of the fission and the budding yeast.
    Gong K; Tjong H; Zhou XJ; Alber F
    PLoS One; 2015; 10(3):e0119672. PubMed ID: 25799503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosome positioning and the clustering of functionally related loci in yeast is driven by chromosomal interactions.
    Gehlen LR; Gruenert G; Jones MB; Rodley CD; Langowski J; O'Sullivan JM
    Nucleus; 2012 Jul; 3(4):370-83. PubMed ID: 22688649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic characterization of the conformation and dynamics of budding yeast chromosome XII.
    Albert B; Mathon J; Shukla A; Saad H; Normand C; Léger-Silvestre I; Villa D; Kamgoue A; Mozziconacci J; Wong H; Zimmer C; Bhargava P; Bancaud A; Gadal O
    J Cell Biol; 2013 Jul; 202(2):201-10. PubMed ID: 23878273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial organization of the budding yeast genome in the cell nucleus and identification of specific chromatin interactions from multi-chromosome constrained chromatin model.
    Gürsoy G; Xu Y; Liang J
    PLoS Comput Biol; 2017 Jul; 13(7):e1005658. PubMed ID: 28704374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Chromosome Fusions on 3D Genome Organization and Gene Expression in Budding Yeast.
    Di Stefano M; Di Giovanni F; Pozharskaia V; Gomar-Alba M; Baù D; Carey LB; Marti-Renom MA; Mendoza M
    Genetics; 2020 Mar; 214(3):651-667. PubMed ID: 31907200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. tRNA gene identity affects nuclear positioning.
    Rodley CD; Pai DA; Mills TA; Engelke DR; O'Sullivan JM
    PLoS One; 2011; 6(12):e29267. PubMed ID: 22206006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome organization in three dimensions: thinking outside the line.
    Haeusler RA; Engelke DR
    Cell Cycle; 2004 Mar; 3(3):273-5. PubMed ID: 14726665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear organization and chromatin dynamics in yeast: biophysical models or biologically driven interactions?
    Albert B; Léger-Silvestre I; Normand C; Gadal O
    Biochim Biophys Acta; 2012 Jun; 1819(6):468-81. PubMed ID: 22245105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. tRNA Genes Affect Chromosome Structure and Function via Local Effects.
    Hamdani O; Dhillon N; Hsieh TS; Fujita T; Ocampo J; Kirkland JG; Lawrimore J; Kobayashi TJ; Friedman B; Fulton D; Wu KY; Chereji RV; Oki M; Bloom K; Clark DJ; Rando OJ; Kamakaka RT
    Mol Cell Biol; 2019 Apr; 39(8):. PubMed ID: 30718362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repeated elements coordinate the spatial organization of the yeast genome.
    O'Sullivan JM; Sontam DM; Grierson R; Jones B
    Yeast; 2009 Feb; 26(2):125-38. PubMed ID: 19235779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. tRNA genes and retroelements in the yeast genome.
    Hani J; Feldmann H
    Nucleic Acids Res; 1998 Feb; 26(3):689-96. PubMed ID: 9443958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamical modeling of three-dimensional genome organization in interphase budding yeast.
    Tokuda N; Terada TP; Sasai M
    Biophys J; 2012 Jan; 102(2):296-304. PubMed ID: 22339866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome.
    Hajjoul H; Mathon J; Ranchon H; Goiffon I; Mozziconacci J; Albert B; Carrivain P; Victor JM; Gadal O; Bystricky K; Bancaud A
    Genome Res; 2013 Nov; 23(11):1829-38. PubMed ID: 24077391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes.
    Haeusler RA; Pratt-Hyatt M; Good PD; Gipson TA; Engelke DR
    Genes Dev; 2008 Aug; 22(16):2204-14. PubMed ID: 18708579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Principles of chromosomal organization: lessons from yeast.
    Zimmer C; Fabre E
    J Cell Biol; 2011 Mar; 192(5):723-33. PubMed ID: 21383075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How to build a yeast nucleus.
    Wong H; Arbona JM; Zimmer C
    Nucleus; 2013; 4(5):361-6. PubMed ID: 23974728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enrichment of dynamic chromosomal crosslinks drive phase separation of the nucleolus.
    Hult C; Adalsteinsson D; Vasquez PA; Lawrimore J; Bennett M; York A; Cook D; Yeh E; Forest MG; Bloom K
    Nucleic Acids Res; 2017 Nov; 45(19):11159-11173. PubMed ID: 28977453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical principles and functional consequences of nuclear compartmentalization in budding yeast.
    Miné-Hattab J; Taddei A
    Curr Opin Cell Biol; 2019 Jun; 58():105-113. PubMed ID: 30928833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.