These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 22619591)

  • 1. Simple reversed-phase HPLC method with spectrophotometric detection for measuring acetaminophen-protein adducts in rat liver samples.
    Acharya M; Lau-Cam CA
    ScientificWorldJournal; 2012; 2012():145651. PubMed ID: 22619591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of a biomarker of acetaminophen protein adducts in human serum by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry: clinical and animal model applications.
    Cook SF; King AD; Chang Y; Murray GJ; Norris HR; Dart RC; Green JL; Curry SC; Rollins DE; Wilkins DG
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Mar; 985():131-41. PubMed ID: 25681644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacokinetics of acetaminophen-protein adducts in adults with acetaminophen overdose and acute liver failure.
    James LP; Letzig L; Simpson PM; Capparelli E; Roberts DW; Hinson JA; Davern TJ; Lee WM
    Drug Metab Dispos; 2009 Aug; 37(8):1779-84. PubMed ID: 19439490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prolonged Acetaminophen-Protein Adduct Elimination During Renal Failure, Lack of Adduct Removal by Hemodiafiltration, and Urinary Adduct Concentrations After Acetaminophen Overdose.
    Curry SC; Padilla-Jones A; O'Connor AD; Ruha AM; Bikin DS; Wilkins DG; Rollins DE; Slawson MH; Gerkin RD;
    J Med Toxicol; 2015 Jun; 11(2):169-78. PubMed ID: 25288219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Relationship Between Circulating Acetaminophen-Protein Adduct Concentrations and Alanine Aminotransferase Activities in Patients With and Without Acetaminophen Overdose and Toxicity.
    Curry SC; Padilla-Jones A; Ruha AM; O'Connor AD; Kang AM; Wilkins DG; Jaeschke H; Wilhelms K; Gerkin RD;
    J Med Toxicol; 2019 Jul; 15(3):143-155. PubMed ID: 30980348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetaminophen-cysteine adducts during therapeutic dosing and following overdose.
    Heard KJ; Green JL; James LP; Judge BS; Zolot L; Rhyee S; Dart RC
    BMC Gastroenterol; 2011 Mar; 11():20. PubMed ID: 21401949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetaminophen protein adduct formation following low-dose acetaminophen exposure: comparison of immediate-release vs extended-release formulations.
    James LP; Chiew A; Abdel-Rahman SM; Letzig L; Graudins A; Day P; Roberts D
    Eur J Clin Pharmacol; 2013 Apr; 69(4):851-7. PubMed ID: 23052410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the protective actions of N-acetylcysteine, hypotaurine and taurine against acetaminophen-induced hepatotoxicity in the rat.
    Acharya M; Lau-Cam CA
    J Biomed Sci; 2010 Aug; 17 Suppl 1(Suppl 1):S35. PubMed ID: 20804611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of gradient reversed phase high performance liquid chromatography analysis of acetaminophen oxidation metabolites using linear and non-linear retention model.
    Vanova J; Malinak D; Andrys R; Kubat M; Mikysek T; Rousarova E; Musilek K; Rousar T; Cesla P
    J Chromatogr A; 2022 Apr; 1669():462956. PubMed ID: 35306469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The analysis of acetaminophen (paracetamol) and seven metabolites in rat, pig and human plasma by U(H)PLC-MS.
    Dargue R; Grant I; Nye LC; Nicholls A; Dare T; Stahl SH; Plumb RS; Lee K; Jalan R; Coen M; Wilson ID
    Bioanalysis; 2020 Apr; 12(7):485-500. PubMed ID: 32343149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Determination of dacarbazine in the urine of mice with melanoma by high performance liquid chromatography].
    Yue Y; Zhou B; Ai J; Feng S
    Se Pu; 2020 Nov; 38(11):1302-1307. PubMed ID: 34213101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperbaric oxygen treatment and N-acetylcysteine ameliorate acetaminophen-induced liver injury in a rat model.
    Taslipinar MY; Aydin I; Kaldirim U; Aydin FN; Agilli M; Eyi YE; Tuncer SK; Altayli E; Ucar F; Macit E; Toygar M; Yigit N; Cayci T
    Hum Exp Toxicol; 2013 Oct; 32(10):1107-16. PubMed ID: 23925941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simplified reversed-phase HPLC method with spectrophotometric detection for the assay of verapamil in rat plasma.
    Lau-Cam CA; Piemontese D
    J Pharm Biomed Anal; 1998 Feb; 16(6):1029-35. PubMed ID: 9547706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of Acetaminophen and Its Metabolites in Plasma Using UPLC-MS: Doors Open to Therapeutic Drug Monitoring in Special Patient Populations.
    Flint RB; Mian P; van der Nagel B; Slijkhuis N; Koch BC
    Ther Drug Monit; 2017 Apr; 39(2):164-171. PubMed ID: 28169862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sex- and age-dependent acetaminophen hepato- and nephrotoxicity in Sprague-Dawley rats: role of tissue accumulation, nonprotein sulfhydryl depletion, and covalent binding.
    Tarloff JB; Khairallah EA; Cohen SD; Goldstein RS
    Fundam Appl Toxicol; 1996 Mar; 30(1):13-22. PubMed ID: 8812206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of extracellular vesicles in release of protein adducts after acetaminophen-induced liver injury in mice and humans.
    Duan L; Ramachandran A; Akakpo JY; Weemhoff JL; Curry SC; Jaeschke H
    Toxicol Lett; 2019 Feb; 301():125-132. PubMed ID: 30447259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of acetaminophen-cysteine to acetaminophen nephrotoxicity II. Possible involvement of the gamma-glutamyl cycle.
    Stern ST; Bruno MK; Horton RA; Hill DW; Roberts JC; Cohen SD
    Toxicol Appl Pharmacol; 2005 Jan; 202(2):160-71. PubMed ID: 15629191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalent binding of acetaminophen to mouse hemoglobin. Identification of major and minor adducts formed in vivo and implications for the nature of the arylating metabolites.
    Axworthy DB; Hoffmann KJ; Streeter AJ; Calleman CJ; Pascoe GA; Baillie TA
    Chem Biol Interact; 1988; 68(1-2):99-116. PubMed ID: 3203411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of oxidation and deacetylation to the bioactivation of acetaminophen in vitro in liver and kidney from male and female Sprague-Dawley rats.
    Mugford CA; Tarloff JB
    Drug Metab Dispos; 1995 Feb; 23(2):290-4. PubMed ID: 7736927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective acetaminophen metabolite binding to hepatic and extrahepatic proteins: an in vivo and in vitro analysis.
    Bartolone JB; Beierschmitt WP; Birge RB; Hart SG; Wyand S; Cohen SD; Khairallah EA
    Toxicol Appl Pharmacol; 1989 Jun; 99(2):240-9. PubMed ID: 2734789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.