These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 22620860)
1. Interactional effects of β-glucan, starch, and protein in heated oat slurries on viscosity and in vitro bile acid binding. Kim HJ; White PJ J Agric Food Chem; 2012 Jun; 60(24):6217-22. PubMed ID: 22620860 [TBL] [Abstract][Full Text] [Related]
2. In vitro digestion rate and estimated glycemic index of oat flours from typical and high β-glucan oat lines. Kim HJ; White PJ J Agric Food Chem; 2012 May; 60(20):5237-42. PubMed ID: 22563763 [TBL] [Abstract][Full Text] [Related]
3. In vitro bile acid binding of flours from oat lines varying in percentage and molecular weight distribution of beta-glucan. Sayar S; Jannink JL; White PJ J Agric Food Chem; 2005 Nov; 53(22):8797-803. PubMed ID: 16248587 [TBL] [Abstract][Full Text] [Related]
4. Individual and interactional effects of β-glucan, starch, and protein on pasting properties of oat flours. Liu Y; Bailey TB; White PJ J Agric Food Chem; 2010 Aug; 58(16):9198-203. PubMed ID: 23654244 [TBL] [Abstract][Full Text] [Related]
5. Molecular weight and structure of water soluble (1→3), (1→4)-β-glucans affect pasting properties of oat flours. Liu Y; White PJ J Food Sci; 2011; 76(1):C68-74. PubMed ID: 21535656 [TBL] [Abstract][Full Text] [Related]
6. Impact of dry solids and bile acid concentrations on bile acid binding capacity of extruded oat cereals. Yao N; White PJ; Jannink JL; Alavi S J Agric Food Chem; 2008 Sep; 56(18):8672-9. PubMed ID: 18754664 [TBL] [Abstract][Full Text] [Related]
7. In vitro bile acid binding activity within flour fractions from oat lines with typical and high beta-glucan amounts. Sayar S; Jannink JL; White PJ J Agric Food Chem; 2006 Jul; 54(14):5142-8. PubMed ID: 16819928 [TBL] [Abstract][Full Text] [Related]
8. Impact of the molecular weight, viscosity, and solubility of β-glucan on in vitro oat starch digestibility. Kim HJ; White PJ J Agric Food Chem; 2013 Apr; 61(13):3270-7. PubMed ID: 23469761 [TBL] [Abstract][Full Text] [Related]
9. In vitro bile-acid binding and fermentation of high, medium, and low molecular weight beta-glucan. Kim HJ; White PJ J Agric Food Chem; 2010 Jan; 58(1):628-34. PubMed ID: 20020684 [TBL] [Abstract][Full Text] [Related]
10. Structural and biological characterization of sulfated-derivatized oat beta-glucan. Chang YJ; Lee S; Yoo MA; Lee HG J Agric Food Chem; 2006 May; 54(11):3815-8. PubMed ID: 16719501 [TBL] [Abstract][Full Text] [Related]
11. The effects of steaming and roasting treatments on beta-glucan, lipid and starch in the kernels of naked oat (Avena nuda). Hu X; Xing X; Ren C J Sci Food Agric; 2010 Mar; 90(4):690-5. PubMed ID: 20355100 [TBL] [Abstract][Full Text] [Related]
12. Optimizing the molecular weight of oat β-glucan for in vitro bile acid binding and fermentation. Kim HJ; White PJ J Agric Food Chem; 2011 Sep; 59(18):10322-8. PubMed ID: 21834529 [TBL] [Abstract][Full Text] [Related]
13. Content and molecular weight of extractable beta-glucan in American and Swedish oat samples. Ajithkumar A; Andersson R; Aman P J Agric Food Chem; 2005 Feb; 53(4):1205-9. PubMed ID: 15713042 [TBL] [Abstract][Full Text] [Related]
14. Effect of enzymatic hydrolysis on cholesterol-lowering activity of oat beta-glucan. Bae IY; Kim SM; Lee S; Lee HG N Biotechnol; 2010 Feb; 27(1):85-8. PubMed ID: 19931657 [TBL] [Abstract][Full Text] [Related]
15. In vitro study for investigating the impact of decreasing the molecular weight of oat bran dietary fibre components on the behaviour in small and large intestine. Rosa-Sibakov N; Mäkelä N; Aura AM; Sontag-Strohm T; Nordlund E Food Funct; 2020 Jul; 11(7):6680-6691. PubMed ID: 32658235 [TBL] [Abstract][Full Text] [Related]
16. Digestion residues of typical and high-beta-glucan oat flours provide substrates for in vitro fermentation. Sayar S; Jannink JL; White PJ J Agric Food Chem; 2007 Jun; 55(13):5306-11. PubMed ID: 17550267 [TBL] [Abstract][Full Text] [Related]
17. The contribution of β-glucan and starch fine structure to texture of oat-fortified wheat noodles. Nguyen TTL; Gilbert RG; Gidley MJ; Fox GP Food Chem; 2020 Sep; 324():126858. PubMed ID: 32353656 [TBL] [Abstract][Full Text] [Related]
18. Extraction and characterization of beta-D-glucan from oat for industrial utilization. Ahmad A; Anjum FM; Zahoor T; Nawaz H; Ahmed Z Int J Biol Macromol; 2010 Apr; 46(3):304-9. PubMed ID: 20083136 [TBL] [Abstract][Full Text] [Related]
19. Identification of high β-glucan oat lines and localization and chemical characterization of their seed kernel β-glucans. Sikora P; Tosh SM; Brummer Y; Olsson O Food Chem; 2013 Apr; 137(1-4):83-91. PubMed ID: 23199994 [TBL] [Abstract][Full Text] [Related]
20. Role of β-glucan content, molecular weight and phytate in the bile acid binding of oat β-glucan. Mäkelä N; Rosa-Sibakov N; Wang YJ; Mattila O; Nordlund E; Sontag-Strohm T Food Chem; 2021 Oct; 358():129917. PubMed ID: 33933973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]