These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 22621168)
21. Predicting PAMPA permeability using the 3D-RISM-KH theory: are we there yet? Roy D; Dutta D; Wishart DS; Kovalenko A J Comput Aided Mol Des; 2021 Feb; 35(2):261-269. PubMed ID: 33392947 [TBL] [Abstract][Full Text] [Related]
22. Modeling the pharmacodynamics of passive membrane permeability. Swift RV; Amaro RE J Comput Aided Mol Des; 2011 Nov; 25(11):1007-17. PubMed ID: 22042376 [TBL] [Abstract][Full Text] [Related]
23. Assessing the Intestinal Permeability of Small Molecule Drugs via Diffusion Motion on a Multidimensional Free Energy Surface. Shoji A; Kang C; Fujioka K; Rose JP; Sun R J Chem Theory Comput; 2022 Jan; 18(1):503-515. PubMed ID: 34851637 [TBL] [Abstract][Full Text] [Related]
24. A comparative study of artificial membrane permeability assay for high throughput profiling of drug absorption potential. Zhu C; Jiang L; Chen TM; Hwang KK Eur J Med Chem; 2002 May; 37(5):399-407. PubMed ID: 12008054 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of various PAMPA models to identify the most discriminating method for the prediction of BBB permeability. Mensch J; Melis A; Mackie C; Verreck G; Brewster ME; Augustijns P Eur J Pharm Biopharm; 2010 Mar; 74(3):495-502. PubMed ID: 20067834 [TBL] [Abstract][Full Text] [Related]
27. Prediction of Passive Membrane Permeability by Semi-Empirical Method Considering Viscous and Inertial Resistances and Different Rates of Conformational Change and Diffusion. Fukunishi Y; Mashimo T; Kurosawa T; Wakabayashi Y; Nakamura HK; Takeuchi K Mol Inform; 2020 Jan; 39(1-2):e1900071. PubMed ID: 31609549 [TBL] [Abstract][Full Text] [Related]
28. Predicting both passive intestinal absorption and the dissociation constant toward albumin using the PAMPA technique. Bujard A; Sol M; Carrupt PA; Martel S Eur J Pharm Sci; 2014 Oct; 63():36-44. PubMed ID: 25008117 [TBL] [Abstract][Full Text] [Related]
29. Drug permeability profiling using cell-free permeation tools: Overview and applications. Berben P; Bauer-Brandl A; Brandl M; Faller B; Flaten GE; Jacobsen AC; Brouwers J; Augustijns P Eur J Pharm Sci; 2018 Jul; 119():219-233. PubMed ID: 29660464 [TBL] [Abstract][Full Text] [Related]
30. Conformational flexibility, internal hydrogen bonding, and passive membrane permeability: successful in silico prediction of the relative permeabilities of cyclic peptides. Rezai T; Bock JE; Zhou MV; Kalyanaraman C; Lokey RS; Jacobson MP J Am Chem Soc; 2006 Nov; 128(43):14073-80. PubMed ID: 17061890 [TBL] [Abstract][Full Text] [Related]
31. In silico prediction of human oral absorption based on QSAR analyses of PAMPA permeability. Akamatsu M; Fujikawa M; Nakao K; Shimizu R Chem Biodivers; 2009 Nov; 6(11):1845-66. PubMed ID: 19937826 [TBL] [Abstract][Full Text] [Related]
32. [In-silico prediction of pharmacokinetic properties]. Hashida M Yakugaku Zasshi; 2005 Nov; 125(11):853-61. PubMed ID: 16272806 [TBL] [Abstract][Full Text] [Related]
33. Relationships between structure and high-throughput screening permeability of peptide derivatives and related compounds with artificial membranes: application to prediction of Caco-2 cell permeability. Ano R; Kimura Y; Shima M; Matsuno R; Ueno T; Akamatsu M Bioorg Med Chem; 2004 Jan; 12(1):257-64. PubMed ID: 14697791 [TBL] [Abstract][Full Text] [Related]
35. Using in vitro ADME data for lead compound selection: An emphasis on PAMPA pH 5 permeability and oral bioavailability. Williams J; Siramshetty V; Nguyễn ÐT; Padilha EC; Kabir M; Yu KR; Wang AQ; Zhao T; Itkin M; Shinn P; Mathé EA; Xu X; Shah P Bioorg Med Chem; 2022 Feb; 56():116588. PubMed ID: 35030421 [TBL] [Abstract][Full Text] [Related]
36. In silico-in vitro estimation of lipophilicity and permeability association for succinimide derivatives using chromatographic anisotropic systems and parallel artificial membrane permeability assay. Vidović D; Milošević N; Pavlović N; Todorović N; Panić JČ; Ćurčić J; Banjac N; Trišović N; Božić B; Lalić-Popović M Biomed Chromatogr; 2022 Sep; 36(9):e5413. PubMed ID: 35595284 [TBL] [Abstract][Full Text] [Related]
37. Application of in vitro PAMPA technique and in silico computational methods for blood-brain barrier permeability prediction of novel CNS drug candidates. Radan M; Djikic T; Obradovic D; Nikolic K Eur J Pharm Sci; 2022 Jan; 168():106056. PubMed ID: 34740787 [TBL] [Abstract][Full Text] [Related]
38. Predicting a Drug's Membrane Permeability: A Computational Model Validated With in Vitro Permeability Assay Data. Bennion BJ; Be NA; McNerney MW; Lao V; Carlson EM; Valdez CA; Malfatti MA; Enright HA; Nguyen TH; Lightstone FC; Carpenter TS J Phys Chem B; 2017 May; 121(20):5228-5237. PubMed ID: 28453293 [TBL] [Abstract][Full Text] [Related]
39. Combining SILCS and Artificial Intelligence for High-Throughput Prediction of the Passive Permeability of Drug Molecules. Pandey P; MacKerell AD J Chem Inf Model; 2023 Sep; 63(18):5903-5915. PubMed ID: 37682640 [TBL] [Abstract][Full Text] [Related]
40. pH-permeability profiles for drug substances: Experimental detection, comparison with human intestinal absorption and modelling. Oja M; Maran U Eur J Pharm Sci; 2018 Oct; 123():429-440. PubMed ID: 30100533 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]