These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 22621168)
41. Permeability modes in fluctuating lipid membranes with DNA-translocating pores. Moleiro LH; Mell M; Bocanegra R; López-Montero I; Fouquet P; Hellweg T; Carrascosa JL; Monroy F Adv Colloid Interface Sci; 2017 Sep; 247():543-554. PubMed ID: 28735883 [TBL] [Abstract][Full Text] [Related]
42. A linear free energy analysis of PAMPA models for biological systems. He J; Abraham MH; Acree WE; Zhao YH Int J Pharm; 2015 Dec; 496(2):717-22. PubMed ID: 26529575 [TBL] [Abstract][Full Text] [Related]
44. New biomimetic barrier Permeapad™ for efficient investigation of passive permeability of drugs. di Cagno M; Bibi HA; Bauer-Brandl A Eur J Pharm Sci; 2015 Jun; 73():29-34. PubMed ID: 25840123 [TBL] [Abstract][Full Text] [Related]
45. Towards a unified model of passive drug permeation I: origins of the unstirred water layer with applications to ionic permeation. Ghosh A; Scott DO; Maurer TS Eur J Pharm Sci; 2014 Feb; 52():109-24. PubMed ID: 24211511 [TBL] [Abstract][Full Text] [Related]
46. An evaluation of the potential of linear and nonlinear skin permeation models for the prediction of experimentally measured percutaneous drug absorption. Brown MB; Lau CH; Lim ST; Sun Y; Davey N; Moss GP; Yoo SH; De Muynck C J Pharm Pharmacol; 2012 Apr; 64(4):566-77. PubMed ID: 22420662 [TBL] [Abstract][Full Text] [Related]
47. Parallel artificial membrane permeability assay: a new membrane for the fast prediction of passive human skin permeability. Ottaviani G; Martel S; Carrupt PA J Med Chem; 2006 Jun; 49(13):3948-54. PubMed ID: 16789751 [TBL] [Abstract][Full Text] [Related]
48. Recent Experimental Developments in Studying Passive Membrane Transport of Drug Molecules. Sharifian Gh M Mol Pharm; 2021 Jun; 18(6):2122-2141. PubMed ID: 33914545 [TBL] [Abstract][Full Text] [Related]
49. Physicochemical selectivity of the BBB microenvironment governing passive diffusion--matching with a porcine brain lipid extract artificial membrane permeability model. Tsinman O; Tsinman K; Sun N; Avdeef A Pharm Res; 2011 Feb; 28(2):337-63. PubMed ID: 20945153 [TBL] [Abstract][Full Text] [Related]
50. Modulation of the Passive Permeability of Semipeptidic Macrocycles: N- and C-Methylations Fine-Tune Conformation and Properties. Comeau C; Ries B; Stadelmann T; Tremblay J; Poulet S; Fröhlich U; Côté J; Boudreault PL; Derbali RM; Sarret P; Grandbois M; Leclair G; Riniker S; Marsault É J Med Chem; 2021 May; 64(9):5365-5383. PubMed ID: 33750117 [TBL] [Abstract][Full Text] [Related]
51. Investigation of the Efficacy of Transdermal Penetration Enhancers Through the Use of Human Skin and a Skin Mimic Artificial Membrane. Balázs B; Vizserálek G; Berkó S; Budai-Szűcs M; Kelemen A; Sinkó B; Takács-Novák K; Szabó-Révész P; Csányi E J Pharm Sci; 2016 Mar; 105(3):1134-40. PubMed ID: 26886318 [TBL] [Abstract][Full Text] [Related]
52. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim. Sjögren E; Westergren J; Grant I; Hanisch G; Lindfors L; Lennernäs H; Abrahamsson B; Tannergren C Eur J Pharm Sci; 2013 Jul; 49(4):679-98. PubMed ID: 23727464 [TBL] [Abstract][Full Text] [Related]
53. ADME evaluation in drug discovery. 5. Correlation of Caco-2 permeation with simple molecular properties. Hou TJ; Zhang W; Xia K; Qiao XB; Xu XJ J Chem Inf Comput Sci; 2004; 44(5):1585-600. PubMed ID: 15446816 [TBL] [Abstract][Full Text] [Related]
54. Estimation of passive gastrointestinal absorption and membrane retention using PAMPA test, quantitative structure-permeability and quantitative structure-retention relationship analyses of ethylenediamine-N,N'-di-2-(3-cyclohexyl)propanoic acid and 1,3-propanediamine-N,N'-di-2-(3-cyclohexyl)propanoic acid derivatives. Tubić B; Dobričić V; Poljarević J; Savić A; Sabo T; Marković B J Pharm Biomed Anal; 2020 May; 184():113213. PubMed ID: 32126457 [TBL] [Abstract][Full Text] [Related]
55. A new PAMPA model proposed on the basis of a synthetic phospholipid membrane. Yu H; Wang Q; Sun Y; Shen M; Li H; Duan Y PLoS One; 2015; 10(2):e0116502. PubMed ID: 25647086 [TBL] [Abstract][Full Text] [Related]
56. Predicting the extent of metabolism using in vitro permeability rate measurements and in silico permeability rate predictions. Hosey CM; Benet LZ Mol Pharm; 2015 May; 12(5):1456-66. PubMed ID: 25816851 [TBL] [Abstract][Full Text] [Related]
57. Drug permeability across a phospholipid vesicle based barrier: a novel approach for studying passive diffusion. Flaten GE; Dhanikula AB; Luthman K; Brandl M Eur J Pharm Sci; 2006 Jan; 27(1):80-90. PubMed ID: 16246536 [TBL] [Abstract][Full Text] [Related]
58. An improved diffusion cell design for determining drug transport parameters across cultured cell monolayers. Imanidis G; Waldner C; Mettler C; Leuenberger H J Pharm Sci; 1996 Nov; 85(11):1196-203. PubMed ID: 8923325 [TBL] [Abstract][Full Text] [Related]
59. In situ artificial membrane permeation assay under hydrodynamic control: permeability-pH profiles of warfarin and verapamil. Velický M; Bradley DF; Tam KY; Dryfe RA Pharm Res; 2010 Aug; 27(8):1644-58. PubMed ID: 20449764 [TBL] [Abstract][Full Text] [Related]
60. QSAR-based permeability model for drug-like compounds. Gozalbes R; Jacewicz M; Annand R; Tsaioun K; Pineda-Lucena A Bioorg Med Chem; 2011 Apr; 19(8):2615-24. PubMed ID: 21458999 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]