BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 22621320)

  • 21. Administration of adiponectin receptor agonist AdipoRon relieves cancer cachexia by mitigating inflammation in tumour-bearing mice.
    Massart IS; Kouakou AN; Pelet N; Lause P; Schakman O; Loumaye A; Abou-Samra M; Deldicque L; Bindels LB; Brichard SM; Thissen JP
    J Cachexia Sarcopenia Muscle; 2024 Jun; 15(3):919-933. PubMed ID: 38572511
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FoxP1 is a transcriptional repressor associated with cancer cachexia that induces skeletal muscle wasting and weakness.
    Neyroud D; Nosacka RL; Callaway CS; Trevino JG; Hu H; Judge SM; Judge AR
    J Cachexia Sarcopenia Muscle; 2021 Apr; 12(2):421-442. PubMed ID: 33527776
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coculture with Colon-26 cancer cells decreases the protein synthesis rate and shifts energy metabolism toward glycolysis dominance in C2C12 myotubes.
    Tamura Y; Kouzaki K; Kotani T; Nakazato K
    Am J Physiol Cell Physiol; 2024 May; 326(5):C1520-C1542. PubMed ID: 38557354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways.
    Rodriguez J; Vernus B; Chelh I; Cassar-Malek I; Gabillard JC; Hadj Sassi A; Seiliez I; Picard B; Bonnieu A
    Cell Mol Life Sci; 2014 Nov; 71(22):4361-71. PubMed ID: 25080109
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Handelin alleviates cachexia- and aging-induced skeletal muscle atrophy by improving protein homeostasis and inhibiting inflammation.
    Zhang HJ; Wang BH; Wang X; Huang CP; Xu SM; Wang JL; Huang TE; Xiao WL; Tian XL; Lan XQ; Wang QQ; Xiang Y
    J Cachexia Sarcopenia Muscle; 2024 Feb; 15(1):173-188. PubMed ID: 38009816
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pro-cachectic factors link experimental and human chronic kidney disease to skeletal muscle wasting programs.
    Solagna F; Tezze C; Lindenmeyer MT; Lu S; Wu G; Liu S; Zhao Y; Mitchell R; Meyer C; Omairi S; Kilic T; Paolini A; Ritvos O; Pasternack A; Matsakas A; Kylies D; Wiesch JSZ; Turner JE; Wanner N; Nair V; Eichinger F; Menon R; Martin IV; Klinkhammer BM; Hoxha E; Cohen CD; Tharaux PL; Boor P; Ostendorf T; Kretzler M; Sandri M; Kretz O; Puelles VG; Patel K; Huber TB
    J Clin Invest; 2021 Jun; 131(11):. PubMed ID: 34060483
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Licochalcone A and B enhance muscle proliferation and differentiation by regulating Myostatin.
    Ahmad K; Lee EJ; Ali S; Han KS; Hur SJ; Lim JH; Choi I
    Phytomedicine; 2024 Mar; 125():155350. PubMed ID: 38237512
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The complex heterogeneity of immune cell signatures across wasting tissues with C26 and 5-fluorouracil-induced cachexia.
    VanderVeen BN; Cardaci TD; Bullard BM; Huss AR; McDonald SJ; Muhammed AD; Kubinak JL; Fan D; Murphy EA
    Am J Physiol Cell Physiol; 2024 Feb; 326(2):C606-C621. PubMed ID: 38189130
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Growth of ovarian cancer xenografts causes loss of muscle and bone mass: a new model for the study of cancer cachexia.
    Pin F; Barreto R; Kitase Y; Mitra S; Erne CE; Novinger LJ; Zimmers TA; Couch ME; Bonewald LF; Bonetto A
    J Cachexia Sarcopenia Muscle; 2018 Aug; 9(4):685-700. PubMed ID: 30009406
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tumor-derived IL-6 and trans-signaling among tumor, fat, and muscle mediate pancreatic cancer cachexia.
    Rupert JE; Narasimhan A; Jengelley DHA; Jiang Y; Liu J; Au E; Silverman LM; Sandusky G; Bonetto A; Cao S; Lu X; O'Connell TM; Liu Y; Koniaris LG; Zimmers TA
    J Exp Med; 2021 Jun; 218(6):. PubMed ID: 33851955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deliberation on debilitating condition of cancer cachexia: Skeletal muscle wasting.
    Dave S; Patel BM
    Fundam Clin Pharmacol; 2023 Dec; 37(6):1079-1091. PubMed ID: 37474262
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cancer cachexia is regulated by selective targeting of skeletal muscle gene products.
    Acharyya S; Ladner KJ; Nelsen LL; Damrauer J; Reiser PJ; Swoap S; Guttridge DC
    J Clin Invest; 2004 Aug; 114(3):370-8. PubMed ID: 15286803
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exercise training reverses cancer-induced oxidative stress and decrease in muscle COPS2/TRIP15/ALIEN.
    Alves CRR; Neves WD; de Almeida NR; Eichelberger EJ; Jannig PR; Voltarelli VA; Tobias GC; Bechara LRG; de Paula Faria D; Alves MJN; Hagen L; Sharma A; Slupphaug G; Moreira JBN; Wisloff U; Hirshman MF; Negrão CE; de Castro G; Chammas R; Swoboda KJ; Ruas JL; Goodyear LJ; Brum PC
    Mol Metab; 2020 Sep; 39():101012. PubMed ID: 32408015
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Myostatin augments muscle-specific ring finger protein-1 expression through an NF-kB independent mechanism in SMAD3 null muscle.
    Sriram S; Subramanian S; Juvvuna PK; Ge X; Lokireddy S; McFarlane CD; Wahli W; Kambadur R; Sharma M
    Mol Endocrinol; 2014 Mar; 28(3):317-30. PubMed ID: 24438338
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Myostatin gene invalidation does not prevent skeletal muscle mass loss during experimental sepsis in mice.
    Morel J; Pignard AS; Castells J; Allibert V; Hatimi L; Buhot B; Velarde M; Durieux AC; Freyssenet D
    J Physiol; 2024 Jun; 602(12):2839-2854. PubMed ID: 38748517
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeting myostatin/activin A protects against skeletal muscle and bone loss during spaceflight.
    Lee SJ; Lehar A; Meir JU; Koch C; Morgan A; Warren LE; Rydzik R; Youngstrom DW; Chandok H; George J; Gogain J; Michaud M; Stoklasek TA; Liu Y; Germain-Lee EL
    Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23942-23951. PubMed ID: 32900939
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protective effects of hachimijiogan (HJG), a Japanese Kampo medicine, on cancer cachectic muscle wasting in mice.
    Kametaka S; Isobe M; Komata K; Morinaga M; Nagahata K; Lee-Hotta S; Uchiyama Y; Shibata M; Sugiura H
    Biomed Res; 2023; 44(5):199-207. PubMed ID: 37779032
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Red blood cell extracellular vesicles deliver therapeutic siRNAs to skeletal muscles for treatment of cancer cachexia.
    Peng B; Yang Y; Wu Z; Tan R; Pham TT; Yeo EYM; Pirisinu M; Jayasinghe MK; Pham TC; Liang K; Shyh-Chang N; Le MTN
    Mol Ther; 2023 May; 31(5):1418-1436. PubMed ID: 37016578
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial fusion and altered beta-oxidation drive muscle wasting in a Drosophila cachexia model.
    Dark C; Ali N; Golenkina S; Dhyani V; Blazev R; Parker BL; Murphy KT; Lynch GS; Senapati T; Millard SS; Judge SM; Judge AR; Giri L; Russell SM; Cheng LY
    EMBO Rep; 2024 Apr; 25(4):1835-1858. PubMed ID: 38429578
    [TBL] [Abstract][Full Text] [Related]  

  • 40. HCT116 colorectal liver metastases exacerbate muscle wasting in a mouse model for the study of colorectal cancer cachexia.
    Huot JR; Novinger LJ; Pin F; Bonetto A
    Dis Model Mech; 2020 Jan; 13(1):. PubMed ID: 31915140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.