These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 22621977)

  • 1. Heteronuclear Adiabatic Relaxation Dispersion (HARD) for quantitative analysis of conformational dynamics in proteins.
    Traaseth NJ; Chao FA; Masterson LR; Mangia S; Garwood M; Michaeli S; Seelig B; Veglia G
    J Magn Reson; 2012 Jun; 219():75-82. PubMed ID: 22621977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing slow protein dynamics by adiabatic R(1rho) and R(2rho) NMR experiments.
    Mangia S; Traaseth NJ; Veglia G; Garwood M; Michaeli S
    J Am Chem Soc; 2010 Jul; 132(29):9979-81. PubMed ID: 20590094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency offset dependence of adiabatic rotating frame relaxation rate constants: relevance to MRS investigations of metabolite dynamics in vivo.
    Mangia S; Liimatainen T; Garwood M; Tkac I; Henry PG; Deelchand D; Michaeli S
    NMR Biomed; 2011 Aug; 24(7):807-14. PubMed ID: 21264976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing microsecond time scale dynamics in proteins by methyl (1)H Carr-Purcell-Meiboom-Gill relaxation dispersion NMR measurements. Application to activation of the signaling protein NtrC(r).
    Otten R; Villali J; Kern D; Mulder FA
    J Am Chem Soc; 2010 Dec; 132(47):17004-14. PubMed ID: 21058670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Algebraic expressions for Carr-Purcell-Meiboom-Gill relaxation dispersion for N-site chemical exchange.
    Koss H; Rance M; Palmer AG
    J Magn Reson; 2020 Dec; 321():106846. PubMed ID: 33128917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A (15)N CPMG relaxation dispersion experiment more resistant to resonance offset and pulse imperfection.
    Jiang B; Yu B; Zhang X; Liu M; Yang D
    J Magn Reson; 2015 Aug; 257():1-7. PubMed ID: 26037134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring the signs of 1H(alpha) chemical shift differences between ground and excited protein states by off-resonance spin-lock R(1rho) NMR spectroscopy.
    Auer R; Neudecker P; Muhandiram DR; Lundström P; Hansen DF; Konrat R; Kay LE
    J Am Chem Soc; 2009 Aug; 131(31):10832-3. PubMed ID: 19606858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Off-resonance rotating-frame relaxation dispersion experiment for 13C in aromatic side chains using L-optimized TROSY-selection.
    Weininger U; Brath U; Modig K; Teilum K; Akke M
    J Biomol NMR; 2014 May; 59(1):23-9. PubMed ID: 24706175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rotating frame relaxation during adiabatic pulses vs. conventional spin lock: simulations and experimental results at 4 T.
    Mangia S; Liimatainen T; Garwood M; Michaeli S
    Magn Reson Imaging; 2009 Oct; 27(8):1074-87. PubMed ID: 19559559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous determination of fast and slow dynamics in molecules using extreme CPMG relaxation dispersion experiments.
    Reddy JG; Pratihar S; Ban D; Frischkorn S; Becker S; Griesinger C; Lee D
    J Biomol NMR; 2018 Jan; 70(1):1-9. PubMed ID: 29188417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the Broad Time Scale and Heterogeneous Conformational Dynamics in the Catalytic Core of the Arf-GAP ASAP1 via Methyl Adiabatic Relaxation Dispersion.
    Chao FA; Li Y; Zhang Y; Byrd RA
    J Am Chem Soc; 2019 Jul; 141(30):11881-11891. PubMed ID: 31293161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical exchange effects during refocusing pulses in constant-time CPMG relaxation dispersion experiments.
    Myint W; Ishima R
    J Biomol NMR; 2009 Sep; 45(1-2):207-16. PubMed ID: 19618276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of the signs of methyl 13C chemical shift differences between interconverting ground and excited protein states by R(1ρ): an application to αB-crystallin.
    Baldwin AJ; Kay LE
    J Biomol NMR; 2012 May; 53(1):1-12. PubMed ID: 22476760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exceeding the limit of dynamics studies on biomolecules using high spin-lock field strengths with a cryogenically cooled probehead.
    Ban D; Gossert AD; Giller K; Becker S; Griesinger C; Lee D
    J Magn Reson; 2012 Aug; 221():1-4. PubMed ID: 22743535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CPMG relaxation dispersion.
    Ishima R
    Methods Mol Biol; 2014; 1084():29-49. PubMed ID: 24061914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heteronuclear relaxation in time-dependent spin systems: (15)N-T1 (rho) dispersion during adiabatic fast passage.
    Konrat R; Tollinger M
    J Biomol NMR; 1999 Mar; 13(3):213-21. PubMed ID: 20700818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Off-resonance R(1rho) NMR studies of exchange dynamics in proteins with low spin-lock fields: an application to a Fyn SH3 domain.
    Korzhnev DM; Orekhov VY; Kay LE
    J Am Chem Soc; 2005 Jan; 127(2):713-21. PubMed ID: 15643897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Off-resonance rotating-frame amide proton spin relaxation experiments measuring microsecond chemical exchange in proteins.
    Lundström P; Akke M
    J Biomol NMR; 2005 Jun; 32(2):163-73. PubMed ID: 16034667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Product operator analysis of the influence of chemical exchange on relaxation rates.
    Idiyatullin D; Michaeli S; Garwood M
    J Magn Reson; 2004 Dec; 171(2):330-7. PubMed ID: 15546760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.