BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 22622011)

  • 1. Calculating the Na⁺ translocating V-ATPase catalytic site affinity for substrate binding by homology modeled NtpA monomer using molecular dynamics/free energy calculation.
    Muhammed Z; Arai S; Saijo S; Yamato I; Murata T; Suenaga A
    J Mol Graph Model; 2012 Jul; 37():59-66. PubMed ID: 22622011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstitution in vitro of the catalytic portion (NtpA3-B3-D-G complex) of Enterococcus hirae V-type Na+-ATPase.
    Arai S; Yamato I; Shiokawa A; Saijo S; Kakinuma Y; Ishizuka-Katsura Y; Toyama M; Terada T; Shirouzu M; Yokoyama S; Iwata S; Murata T
    Biochem Biophys Res Commun; 2009 Dec; 390(3):698-702. PubMed ID: 19833097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequencing and characterization of the ntp gene cluster for vacuolar-type Na(+)-translocating ATPase of Enterococcus hirae.
    Takase K; Kakinuma S; Yamato I; Konishi K; Igarashi K; Kakinuma Y
    J Biol Chem; 1994 Apr; 269(15):11037-44. PubMed ID: 8157629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inter-domain motions of the N-domain of the KdpFABC complex, a P-type ATPase, are not driven by ATP-induced conformational changes.
    Haupt M; Bramkamp M; Coles M; Altendorf K; Kessler H
    J Mol Biol; 2004 Oct; 342(5):1547-58. PubMed ID: 15364580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and mechanism of vacuolar Na+-translocating ATPase from Enterococcus hirae.
    Murata T; Yamato I; Kakinuma Y
    J Bioenerg Biomembr; 2005 Dec; 37(6):411-3. PubMed ID: 16691474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of nucleotide binding sites in V-type Na+-ATPase from Enterococcus hirae.
    Hosaka T; Murata T; Kakinuma Y; Yamato I
    Biosci Biotechnol Biochem; 2004 Feb; 68(2):293-9. PubMed ID: 14981290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deletion analysis of the subunit genes of V-type Na+-ATPase from Enterococcus hirae.
    Hosaka T; Takase K; Murata T; Kakinuma Y; Yamato I
    J Biochem; 2006 Jun; 139(6):1045-52. PubMed ID: 16788055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleotide-binding sites in V-type Na+-ATPase from Enterococcus hirae.
    Murata T; Yoshikawa Y; Hosaka T; Takase K; Kakinuma Y; Yamato I; Kikuchi T
    J Biochem; 2002 Nov; 132(5):789-94. PubMed ID: 12417030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the rotor of the V-Type Na+-ATPase from Enterococcus hirae.
    Murata T; Yamato I; Kakinuma Y; Leslie AG; Walker JE
    Science; 2005 Apr; 308(5722):654-9. PubMed ID: 15802565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction and stoichiometry of the peripheral stalk subunits NtpE and NtpF and the N-terminal hydrophilic domain of NtpI of Enterococcus hirae V-ATPase.
    Yamamoto M; Unzai S; Saijo S; Ito K; Mizutani K; Suno-Ikeda C; Yabuki-Miyata Y; Terada T; Toyama M; Shirouzu M; Kobayashi T; Kakinuma Y; Yamato I; Yokoyama S; Iwata S; Murata T
    J Biol Chem; 2008 Jul; 283(28):19422-31. PubMed ID: 18460472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP binding properties of the soluble part of the KdpC subunit from the Escherichia coli K(+)-transporting KdpFABC P-type ATPase.
    Ahnert F; Schmid R; Altendorf K; Greie JC
    Biochemistry; 2006 Sep; 45(36):11038-46. PubMed ID: 16953591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and characterization of the catalytic moiety of vacuolar-type Na(+)-ATPase from Enterococcus hirae.
    Kakinuma Y; Igarashi K
    J Biochem; 1994 Dec; 116(6):1302-8. PubMed ID: 7706221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and function of vacuolar Na+-translocating ATPase in Enterococcus hirae.
    Kakinuma Y; Yamato I; Murata T
    J Bioenerg Biomembr; 1999 Feb; 31(1):7-14. PubMed ID: 10340844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and sequencing of the genes coding for the A and B subunits of vacuolar-type Na(+)-ATPase from Enterococcus hirae. Coexistence of vacuolar- and F0F1-type ATPases in one bacterial cell.
    Takase K; Yamato I; Kakinuma Y
    J Biol Chem; 1993 Jun; 268(16):11610-6. PubMed ID: 8505293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of dimeric SecA, the Escherichia coli preprotein translocase motor.
    Papanikolau Y; Papadovasilaki M; Ravelli RB; McCarthy AA; Cusack S; Economou A; Petratos K
    J Mol Biol; 2007 Mar; 366(5):1545-57. PubMed ID: 17229438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arginine residue at position 573 in Enterococcus hirae vacuolar-type ATPase NtpI subunit plays a crucial role in Na+ translocation.
    Kawano M; Igarashi K; Yamato I; Kakinuma Y
    J Biol Chem; 2002 Jul; 277(27):24405-10. PubMed ID: 11983695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional modules of KdpB, the catalytic subunit of the Kdp-ATPase from Escherichia coli.
    Bramkamp M; Altendorf K
    Biochemistry; 2004 Sep; 43(38):12289-96. PubMed ID: 15379567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The KdpC subunit of the Escherichia coli K+-transporting KdpB P-type ATPase acts as a catalytic chaperone.
    Irzik K; Pfrötzschner J; Goss T; Ahnert F; Haupt M; Greie JC
    FEBS J; 2011 Sep; 278(17):3041-53. PubMed ID: 21711450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP analogue binding to the A subunit induces conformational changes in the E subunit that involves a disulfide bond formation in plant V-ATPase.
    Kawamura Y; Arakawa K; Maeshima M; Yoshida S
    Eur J Biochem; 2001 May; 268(10):2801-9. PubMed ID: 11358495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The stabilizing residues and the functional domains in the hyperthermophilic V-ATPase of Desulfurococcus.
    Shibui H; Hamamoto T; Yohda M; Kagawa Y
    Biochem Biophys Res Commun; 1997 May; 234(2):341-5. PubMed ID: 9177272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.