BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 22622011)

  • 41. Purification and reconstitution of Na+-translocating vacuolar ATPase from Enterococcus hirae.
    Murata T; Takase K; Yamato I; Igarashi K; Kakinuma Y
    J Biol Chem; 1997 Oct; 272(40):24885-90. PubMed ID: 9312089
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A computational model of the inhibition of Mycobacterium tuberculosis ATPase by a new drug candidate R207910.
    de Jonge MR; Koymans LH; Guillemont JE; Koul A; Andries K
    Proteins; 2007 Jun; 67(4):971-80. PubMed ID: 17387738
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rotational mechanism of Enterococcus hirae V1-ATPase by crystal-structure and single-molecule analyses.
    Iino R; Ueno H; Minagawa Y; Suzuki K; Murata T
    Curr Opin Struct Biol; 2015 Apr; 31():49-56. PubMed ID: 25796033
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Primary structure of the alpha-subunit of vacuolar-type Na(+)-ATPase in Enterococcus hirae. Amplification of a 1000-bp fragment by polymerase chain reaction.
    Kakinuma Y; Igarashi K; Konishi K; Yamato I
    FEBS Lett; 1991 Nov; 292(1-2):64-8. PubMed ID: 1835700
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The holo-form of the nucleotide binding domain of the KdpFABC complex from Escherichia coli reveals a new binding mode.
    Haupt M; Bramkamp M; Heller M; Coles M; Deckers-Hebestreit G; Herkenhoff-Hesselmann B; Altendorf K; Kessler H
    J Biol Chem; 2006 Apr; 281(14):9641-9. PubMed ID: 16354672
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tributyltin sensitivity of vacuolar-type Na(+)-transporting ATPase from Enterococcus hirae.
    Chardwiriyapreecha S; Inoue T; Sugimoto N; Sekito T; Yamato I; Murata T; Homma M; Kakinuma Y
    J Toxicol Sci; 2009 Oct; 34(5):575-9. PubMed ID: 19797867
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rotation mechanism of Enterococcus hirae V1-ATPase based on asymmetric crystal structures.
    Arai S; Saijo S; Suzuki K; Mizutani K; Kakinuma Y; Ishizuka-Katsura Y; Ohsawa N; Terada T; Shirouzu M; Yokoyama S; Iwata S; Yamato I; Murata T
    Nature; 2013 Jan; 493(7434):703-7. PubMed ID: 23334411
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mutant LV(476-7)AA of A-subunit of Enterococcus hirae V1-ATPase: High affinity of A3B3 complex to DF axis and low ATPase activity.
    Alam J; Yamato I; Arai S; Saijo S; Mizutani K; Ishizuka-Katsura Y; Ohsawa N; Terada T; Shirouzu M; Yokoyama S; Iwata S; Kakinuma Y; Murata T
    Springerplus; 2013; 2():689. PubMed ID: 24404436
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Computational workflow for the identification of the potent inhibitor of type II secretion system traffic ATPase of Pseudomonas aeruginosa.
    Arifuzzaman M; Mitra S; Jahan SI; Jakaria M; Abeda T; Absar N; Dash R
    Comput Biol Chem; 2018 Oct; 76():191-201. PubMed ID: 30053700
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rotation Mechanism of Molecular Motor V
    Isaka Y; Ekimoto T; Kokabu Y; Yamato I; Murata T; Ikeguchi M
    Biophys J; 2017 Mar; 112(5):911-920. PubMed ID: 28297650
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Deciphering ion transport and ATPase coupling in the intersubunit tunnel of KdpFABC.
    Silberberg JM; Corey RA; Hielkema L; Stock C; Stansfeld PJ; Paulino C; Hänelt I
    Nat Commun; 2021 Aug; 12(1):5098. PubMed ID: 34429416
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The structural basis of a high affinity ATP binding ε subunit from a bacterial ATP synthase.
    Krah A; Kato-Yamada Y; Takada S
    PLoS One; 2017; 12(5):e0177907. PubMed ID: 28542497
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Using thermodynamic integration MD simulation to compute relative protein-ligand binding free energy of a GSK3β kinase inhibitor and its analogs.
    Lee HC; Hsu WC; Liu AL; Hsu CJ; Sun YC
    J Mol Graph Model; 2014 Jun; 51():37-49. PubMed ID: 24858254
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Exploring substrate diffusion in channels using biased molecular dynamics simulations.
    Gumbart J
    Methods Mol Biol; 2012; 914():337-50. PubMed ID: 22976037
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of the N-ATPase, a distinct, laterally transferred Na+-translocating form of the bacterial F-type membrane ATPase.
    Dibrova DV; Galperin MY; Mulkidjanian AY
    Bioinformatics; 2010 Jun; 26(12):1473-6. PubMed ID: 20472544
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular dynamics and high throughput binding free energy calculation of anti-actin anticancer drugs-New insights for better design.
    L R; R PK; M M SM
    Comput Biol Chem; 2016 Oct; 64():47-55. PubMed ID: 27244087
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The muscle-specific beta m protein is functionally different from other members of the X,K-ATPase beta-subunit family.
    Pestov NB; Crambert G; Zhao H; Korneenko TV; Shakhparonov MI; Geering K; Modyanov NN
    Ann N Y Acad Sci; 2003 Apr; 986():304-5. PubMed ID: 12763830
    [No Abstract]   [Full Text] [Related]  

  • 58. Energy and information flows in biological systems: Bioenergy transduction of V
    Yamato I; Murata T; Khrennikov A
    Prog Biophys Mol Biol; 2017 Nov; 130(Pt A):33-38. PubMed ID: 28427899
    [TBL] [Abstract][Full Text] [Related]  

  • 59. NMR assignment of the Wilson disease associated protein N-domain.
    Dmitriev OY; Tsivkovskii R; Abildgaard F; Lutsenko S
    J Biomol NMR; 2006; 36 Suppl 1():61. PubMed ID: 16868859
    [No Abstract]   [Full Text] [Related]  

  • 60. Rotational Mechanism Model of the Bacterial V
    Singharoy A; Chipot C; Ekimoto T; Suzuki K; Ikeguchi M; Yamato I; Murata T
    Front Physiol; 2019; 10():46. PubMed ID: 30804798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.