BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 22622574)

  • 1. All-solid-state dye-sensitized solar cells with high efficiency.
    Chung I; Lee B; He J; Chang RP; Kanatzidis MG
    Nature; 2012 May; 485(7399):486-9. PubMed ID: 22622574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iodine/iodide-free dye-sensitized solar cells.
    Yanagida S; Yu Y; Manseki K
    Acc Chem Res; 2009 Nov; 42(11):1827-38. PubMed ID: 19877690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells.
    Boschloo G; Hagfeldt A
    Acc Chem Res; 2009 Nov; 42(11):1819-26. PubMed ID: 19845388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iodine-Pseudohalogen Ionic Liquid-Based Electrolytes for Quasi-Solid-State Dye-Sensitized Solar Cells.
    Lennert A; Sternberg M; Meyer K; Costa RD; Guldi DM
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33437-33445. PubMed ID: 28448122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A robust organic dye for dye sensitized solar cells based on iodine/iodide electrolytes combining high efficiency and outstanding stability.
    Joly D; Pellejà L; Narbey S; Oswald F; Chiron J; Clifford JN; Palomares E; Demadrille R
    Sci Rep; 2014 Feb; 4():4033. PubMed ID: 24504344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A solid advancement for dye-sensitized solar cells.
    Bach U; Daeneke T
    Angew Chem Int Ed Engl; 2012 Oct; 51(42):10451-2. PubMed ID: 22976290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells.
    Wang M; Chamberland N; Breau L; Moser JE; Humphry-Baker R; Marsan B; Zakeeruddin SM; Grätzel M
    Nat Chem; 2010 May; 2(5):385-9. PubMed ID: 20414239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cs
    Lee B; Ezhumalai Y; Lee W; Chen MC; Yeh CY; Marks TJ; Chang RPH
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21424-21434. PubMed ID: 31014067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent developments in solid-state dye-sensitized solar cells.
    Yum JH; Chen P; Grätzel M; Nazeeruddin MK
    ChemSusChem; 2008; 1(8-9):699-707. PubMed ID: 18686289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Nitrogen Doping on Device Operation for TiO₂-Based Solid-State Dye-Sensitized Solar Cells: Photo-Physics from Materials to Devices.
    Wang J; Tapio K; Habert A; Sorgues S; Colbeau-Justin C; Ratier B; Scarisoreanu M; Toppari J; Herlin-Boime N; Bouclé J
    Nanomaterials (Basel); 2016 Feb; 6(3):. PubMed ID: 28344292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient quasisolid dye- and quantum-dot-sensitized solar cells using thiolate/disulfide redox couple and CoS counter electrode.
    Meng K; Thampi KR
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20768-75. PubMed ID: 25380236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes.
    Daeneke T; Kwon TH; Holmes AB; Duffy NW; Bach U; Spiccia L
    Nat Chem; 2011 Mar; 3(3):211-15. PubMed ID: 21336326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual Functional TiO2-Au Nanocomposite Material for Solid-State Dye-Sensitized Solar Cells.
    Pandikumar A; Suresh S; Murugesan S; Ramaraj R
    J Nanosci Nanotechnol; 2015 Sep; 15(9):6965-72. PubMed ID: 26716269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement in light harvesting in a dye sensitized solar cell based on cascade charge transfer.
    Yang L; Leung WW; Wang J
    Nanoscale; 2013 Aug; 5(16):7493-8. PubMed ID: 23831867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-state dye-sensitized solar cells based on spirofluorene (spiro-OMeTAD) and arylamines as hole transporting materials.
    Hsu CY; Chen YC; Lin RY; Ho KC; Lin JT
    Phys Chem Chem Phys; 2012 Nov; 14(41):14099-109. PubMed ID: 22735398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient and Stable Solid-State Dye-Sensitized Solar Cells by the Combination of Phosphonium Organic Ionic Plastic Crystals with Silica.
    Lennert A; Wagner K; Yunis R; Pringle JM; Guldi DM; Officer DL
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32271-32280. PubMed ID: 30178658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities.
    Odobel F; Le Pleux L; Pellegrin Y; Blart E
    Acc Chem Res; 2010 Aug; 43(8):1063-71. PubMed ID: 20455541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum dot-sensitized solar cells incorporating nanomaterials.
    Yang Z; Chen CY; Roy P; Chang HT
    Chem Commun (Camb); 2011 Sep; 47(34):9561-71. PubMed ID: 21637864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells.
    Yang L; Cappel UB; Unger EL; Karlsson M; Karlsson KM; Gabrielsson E; Sun L; Boschloo G; Hagfeldt A; Johansson EM
    Phys Chem Chem Phys; 2012 Jan; 14(2):779-89. PubMed ID: 22116450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.