BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 22622653)

  • 1. MicroRNAs and fibrosis.
    Patel V; Noureddine L
    Curr Opin Nephrol Hypertens; 2012 Jul; 21(4):410-6. PubMed ID: 22622653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of miR-21 and its signaling pathways in renal diseases.
    Zhou TB; Jiang ZP
    J Recept Signal Transduct Res; 2014 Oct; 34(5):335-7. PubMed ID: 24576069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review: The role of microRNAs in kidney disease.
    Li JY; Yong TY; Michael MZ; Gleadle JM
    Nephrology (Carlton); 2010 Sep; 15(6):599-608. PubMed ID: 20883280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNA and nephropathy: emerging concepts.
    Chung AC; Yu X; Lan HY
    Int J Nephrol Renovasc Dis; 2013 Sep; 6():169-79. PubMed ID: 24109192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNA-302b mitigates renal fibrosis via inhibiting TGF-β/Smad pathway activation.
    Sun M; Zhou W; Yao F; Song J; Xu Y; Deng Z; Diao H; Li S
    Braz J Med Biol Res; 2021; 54(3):e9206. PubMed ID: 33503202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNAs in renal fibrosis.
    Chung AC; Lan HY
    Front Physiol; 2015; 6():50. PubMed ID: 25750628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of microRNA-155 ameliorates renal fibrosis by targeting PDE3A/TGF-β1/Smad signaling in mice with obstructive nephropathy.
    Xi W; Zhao X; Wu M; Jia W; Li H
    Cell Biol Int; 2018 Nov; 42(11):1523-1532. PubMed ID: 30080287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesenchymal stem cells as novel micro-ribonucleic acid delivery vehicles in kidney disease.
    Yao K; Ricardo SD
    Nephrology (Carlton); 2016 May; 21(5):363-71. PubMed ID: 26437381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inducible deletion of microRNA activity in kidney mesenchymal cells exacerbates renal fibrosis.
    Sakuma H; Maruyama K; Aonuma T; Kobayashi Y; Hayasaka T; Kano K; Kawaguchi S; Nakajima KI; Kawabe JI; Hasebe N; Nakagawa N
    Sci Rep; 2024 May; 14(1):10963. PubMed ID: 38745066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The microRNA miR-433 promotes renal fibrosis by amplifying the TGF-β/Smad3-Azin1 pathway.
    Li R; Chung AC; Dong Y; Yang W; Zhong X; Lan HY
    Kidney Int; 2013 Dec; 84(6):1129-44. PubMed ID: 23868013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging role of miRNAs in renal fibrosis.
    Fan Y; Chen H; Huang Z; Zheng H; Zhou J
    RNA Biol; 2020 Jan; 17(1):1-12. PubMed ID: 31550975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silencing of the lncRNA
    Zhang B; Zhao C; Hou L; Wu Y
    Am J Physiol Renal Physiol; 2020 Dec; 319(6):F1125-F1134. PubMed ID: 33135476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesenchymal Stem Cells Deliver Exogenous MicroRNA-let7c via Exosomes to Attenuate Renal Fibrosis.
    Wang B; Yao K; Huuskes BM; Shen HH; Zhuang J; Godson C; Brennan EP; Wilkinson-Berka JL; Wise AF; Ricardo SD
    Mol Ther; 2016 Aug; 24(7):1290-301. PubMed ID: 27203438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of microRNAs in kidney homeostasis and disease.
    Chandrasekaran K; Karolina DS; Sepramaniam S; Armugam A; Wintour EM; Bertram JF; Jeyaseelan K
    Kidney Int; 2012 Apr; 81(7):617-27. PubMed ID: 22237749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta.
    Wang B; Herman-Edelstein M; Koh P; Burns W; Jandeleit-Dahm K; Watson A; Saleem M; Goodall GJ; Twigg SM; Cooper ME; Kantharidis P
    Diabetes; 2010 Jul; 59(7):1794-802. PubMed ID: 20393144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Transfected miR-1908 inhibits renal fibrosis via targeting transforming growth factor beta 1].
    Xie F; Li X; Wei C; Gou L; Dang Y; Shan Z
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2015 Dec; 31(12):1682-5, 1689. PubMed ID: 26648305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long noncoding RNA NEAT1 sponges miR-129 to modulate renal fibrosis by regulation of collagen type I.
    Li C; Liu YF; Huang C; Chen YX; Xu CY; Chen Y
    Am J Physiol Renal Physiol; 2020 Jul; 319(1):F93-F105. PubMed ID: 32475133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smad7 suppresses renal fibrosis via altering expression of TGF-β/Smad3-regulated microRNAs.
    Chung AC; Dong Y; Yang W; Zhong X; Li R; Lan HY
    Mol Ther; 2013 Feb; 21(2):388-98. PubMed ID: 23207693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. miR-328 prevents renal fibrogenesis by directly targeting TGF-β2.
    He W; Zhuang J; Zhao ZG; Luo H; Zhang J
    Bratisl Lek Listy; 2018; 119(7):434-440. PubMed ID: 30160133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MiR-9-5p protects from kidney fibrosis by metabolic reprogramming.
    Fierro-Fernández M; Miguel V; Márquez-Expósito L; Nuevo-Tapioles C; Herrero JI; Blanco-Ruiz E; Tituaña J; Castillo C; Cannata P; Monsalve M; Ruiz-Ortega M; Ramos R; Lamas S
    FASEB J; 2020 Jan; 34(1):410-431. PubMed ID: 31914684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.