These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 22622876)

  • 1. Benefits of photosynthesis for insects in galls.
    Haiden SA; Hoffmann JH; Cramer MD
    Oecologia; 2012 Dec; 170(4):987-97. PubMed ID: 22622876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photosynthesis and sink activity of wasp-induced galls in Acacia pycnantha.
    Dorchin N; Cramer MD; Hoffmann JH
    Ecology; 2006 Jul; 87(7):1781-91. PubMed ID: 16922327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leaf-derived cecidomyiid galls are sinks in Machilus thunbergii (Lauraceae) leaves.
    Huang MY; Huang WD; Chou HM; Lin KH; Chen CC; Chen PJ; Chang YT; Yang CM
    Physiol Plant; 2014 Nov; 152(3):475-85. PubMed ID: 24621096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic dissection of an extended phenotype: Oak galling by a cynipid gall wasp.
    Hearn J; Blaxter M; Schönrogge K; Nieves-Aldrey JL; Pujade-Villar J; Huguet E; Drezen JM; Shorthouse JD; Stone GN
    PLoS Genet; 2019 Nov; 15(11):e1008398. PubMed ID: 31682601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxia and hypercarbia in endophagous insects: Larval position in the plant gas exchange network is key.
    Pincebourde S; Casas J
    J Insect Physiol; 2016 Jan; 84():137-153. PubMed ID: 26188268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chestnut species and jasmonic acid treatment influence development and community interactions of galls produced by the Asian chestnut gall wasp, Dryocosmus kuriphilus.
    Cooper WR; Rieske LK
    J Insect Sci; 2011; 11():140. PubMed ID: 22233098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new galling insect model enhances photosynthetic activity in an obligate holoparasitic plant.
    Murakami R; Ushima R; Sugimoto R; Tamaoki D; Karahara I; Hanba Y; Wakasugi T; Tsuchida T
    Sci Rep; 2021 Jun; 11(1):13013. PubMed ID: 34155293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geographic variation in the evolution and coevolution of a tritrophic interaction.
    Craig TP; Itami JK; Horner JD
    Evolution; 2007 May; 61(5):1137-52. PubMed ID: 17492967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosynthetic efficiency of Clusia arrudae leaf tissue with and without Cecidomyiidae galls.
    Fernandes GW; Coelho MS; Lüttge U
    Braz J Biol; 2010 Oct; 70(3 Suppl):723-8. PubMed ID: 21085778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Caterpillar mimicry by plant galls as a visual defense against herbivores.
    Yamazaki K
    J Theor Biol; 2016 Sep; 404():10-14. PubMed ID: 27220745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of
    Kot I; Sempruch C; Rubinowska K; Michałek W
    Bull Entomol Res; 2020 Feb; 110(1):34-43. PubMed ID: 31190653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cynipid galls on oak leaves are resilient to leaf vein disruption.
    Giertych MJ; Łukowski A; Karolewski P
    J Plant Res; 2023 Jul; 136(4):527-534. PubMed ID: 37133571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome profile of cup-shaped galls in Litsea acuminata leaves.
    Shih TH; Lin SH; Huang MY; Sun CW; Yang CM
    PLoS One; 2018; 13(10):e0205265. PubMed ID: 30356295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The enemy hypothesis: correlates of gall morphology with parasitoid attack rates in two closely related rose cynipid galls.
    László Z; Tóthmérész B
    Bull Entomol Res; 2013 Jun; 103(3):326-35. PubMed ID: 23217451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cynipid wasps systematically reprogram host metabolism and restructure cell walls in developing galls.
    Markel K; Novak V; Bowen BP; Tian Y; Chen YC; Sirirungruang S; Zhou A; Louie KB; Northen TR; Eudes A; Scheller HV; Shih PM
    Plant Physiol; 2024 Apr; 195(1):698-712. PubMed ID: 38236304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gall structure affects ecological associations of Dryocosmus kuriphilus (Hymenoptera: Cynipidae).
    Cooper WR; Rieske LK
    Environ Entomol; 2010 Jun; 39(3):787-97. PubMed ID: 20550791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural, biochemical, and physiological characterization of photosynthesis in leaf-derived cup-shaped galls on Litsea acuminata.
    Huang MY; Huang WD; Chou HM; Chen CC; Chen PJ; Chang YT; Yang CM
    BMC Plant Biol; 2015 Feb; 15():61. PubMed ID: 25849781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predation on rose galls: parasitoids and predators determine gall size through directional selection.
    László Z; Sólyom K; Prázsmári H; Barta Z; Tóthmérész B
    PLoS One; 2014; 9(6):e99806. PubMed ID: 24918448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Woody stem galls interact with foliage to affect community associations.
    Cooper WR; Rieske LK
    Environ Entomol; 2009 Apr; 38(2):417-24. PubMed ID: 19389291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative transcriptome analysis of galls from four different host plants suggests the molecular mechanism of gall development.
    Takeda S; Yoza M; Amano T; Ohshima I; Hirano T; Sato MH; Sakamoto T; Kimura S
    PLoS One; 2019; 14(10):e0223686. PubMed ID: 31647845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.