These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 22622930)

  • 1. Modelling and parameter identification for batch fermentations with Streptomyces tendae under phosphate limitation.
    Mundry C; Kuhn KP
    Appl Microbiol Biotechnol; 1991 Jun; 35(3):306-311. PubMed ID: 22622930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nutritional control of nikkomycin and juglomycin production by Streptomyces tendae in continuous culture.
    Hege-Treskatis D; King R; Wolf H; Gilles ED
    Appl Microbiol Biotechnol; 1992 Jan; 36(4):440-5. PubMed ID: 1368199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic identification of structured process models based on biological phenomena detected in (fed-)batch experiments.
    Herold S; King R
    Bioprocess Biosyst Eng; 2014 Jul; 37(7):1289-304. PubMed ID: 24317484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Metabolism of phosphate-limited Streptomyces cultures. III. The ambivalent effect of phosphates in nourseothricin-producing cultures of Streptomyces noursei JA 3890b].
    Müller PJ; Ozegowski JH
    Zentralbl Bakteriol Mikrobiol Hyg A; 1985 Aug; 260(1):15-34. PubMed ID: 2998122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential processes of phosphate limitation and of phosphate release in streptomycin fermentations.
    Müller PJ; Christner A; Ozegowski JH
    Z Allg Mikrobiol; 1983; 23(4):269-73. PubMed ID: 6412467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling Xanthomonas campestris batch fermentations in a bubble column.
    Pons A; Dussap CG; Gros JB
    Biotechnol Bioeng; 1989 Jan; 33(4):394-405. PubMed ID: 18587930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphologically structured model for antitumoral retamycin production during batch and fed-batch cultivations of Streptomyces olindensis.
    Giudici R; Pamboukian CR; Facciotti MC
    Biotechnol Bioeng; 2004 May; 86(4):414-24. PubMed ID: 15112294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of hydrolase formation and phosphate release in turimycin fermentations.
    Müller PJ; Ozegowski JH; Bocker H
    Z Allg Mikrobiol; 1983; 23(3):173-80. PubMed ID: 6308916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A predictive and feedback control algorithm maintains a constant glucose concentration in fed-batch fermentations.
    Kleman GL; Chalmers JJ; Luli GW; Strohl WR
    Appl Environ Microbiol; 1991 Apr; 57(4):910-7. PubMed ID: 2059049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of oxygen supply on the production of nikkomycin with immobilized cells of Streptomyces tendae.
    Trück HU; Chmiel H; Hammes WP; Trösch W
    Appl Microbiol Biotechnol; 1990 Oct; 34(1):1-4. PubMed ID: 1366970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of pellet morphology during submerged growth of Streptomyces tendae by image analysis.
    Reichl U; King R; Gilles ED
    Biotechnol Bioeng; 1992 Jan; 39(2):164-70. PubMed ID: 18600927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring small-scale chemostats to scale up microbial processes: 3-hydroxypropionic acid production in S. cerevisiae.
    Lis AV; Schneider K; Weber J; Keasling JD; Jensen MK; Klein T
    Microb Cell Fact; 2019 Mar; 18(1):50. PubMed ID: 30857529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical modelling of industrial pilot-plant penicillin-G fed-batch fermentations.
    Menezes JC; Alves SS; Lemos JM; de Azevedo SF
    J Chem Technol Biotechnol; 1994 Oct; 61(2):123-38. PubMed ID: 7765415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Matrix notation for efficient development of first-principles models within PAT applications: integrated modeling of antibiotic production with Streptomyces coelicolor.
    Sin G; Odman P; Petersen N; Lantz AE; Gernaey KV
    Biotechnol Bioeng; 2008 Sep; 101(1):153-71. PubMed ID: 18454503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmid transformation of Streptomyces tendae after heat attenuation of restriction.
    Engel P
    Appl Environ Microbiol; 1987 Jan; 53(1):1-3. PubMed ID: 3030192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Culture medium containing glucose and glycerol as a mixed carbon source improves ε-poly-L-lysine production by Streptomyces sp. M-Z18.
    Chen XS; Ren XD; Dong N; Li S; Li F; Zhao FL; Tang L; Zhang JH; Mao ZG
    Bioprocess Biosyst Eng; 2012 Mar; 35(3):469-75. PubMed ID: 21909683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nikkomycin production in pellets of Streptomyces tendae.
    Vecht-Lifshitz SE; Sasson Y; Braun S
    J Appl Bacteriol; 1992 Mar; 72(3):195-200. PubMed ID: 1568946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving dynamic phytoplankton reserve-utilization models with an indirect proxy for internal nitrogen.
    Malerba ME; Heimann K; Connolly SR
    J Theor Biol; 2016 Sep; 404():1-9. PubMed ID: 27216639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A structured model describing carbon and phosphate limited growth of Catharanthus roseus plant cell suspensions in batch and chemostat culture.
    van Gulik WM; Ten Hoopen HJ; Heijnen JJ
    Biotechnol Bioeng; 1993 Apr; 41(8):771-80. PubMed ID: 18609621
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.