BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 22623018)

  • 1. Development of budesonide nanocluster dry powder aerosols: preformulation.
    El-Gendy N; Selvam P; Soni P; Berkland C
    J Pharm Sci; 2012 Sep; 101(9):3434-44. PubMed ID: 22623018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of budesonide nanocluster dry powder aerosols: processing.
    El-Gendy N; Selvam P; Soni P; Berkland C
    J Pharm Sci; 2012 Sep; 101(9):3425-33. PubMed ID: 22539360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of budesonide nanocluster dry powder aerosols: formulation and stability.
    El-Gendy N; Huang S; Selvam P; Soni P; Berkland C
    J Pharm Sci; 2012 Sep; 101(9):3445-55. PubMed ID: 22619045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coated particle assemblies for the concomitant pulmonary administration of budesonide and salbutamol sulphate.
    Raula J; Rahikkala A; Halkola T; Pessi J; Peltonen L; Hirvonen J; Järvinen K; Laaksonen T; Kauppinen EI
    Int J Pharm; 2013 Jan; 441(1-2):248-54. PubMed ID: 23200957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NanoCluster budesonide formulations enable efficient drug delivery driven by mechanical ventilation.
    Pornputtapitak W; El-Gendy N; Mermis J; O'Brien-Ladner A; Berkland C
    Int J Pharm; 2014 Feb; 462(1-2):19-28. PubMed ID: 24374223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Air classifier technology (ACT) in dry powder inhalation Part 4. Performance of air classifier technology in the Novolizer multi-dose dry powder inhaler.
    de Boer AH; Hagedoorn P; Gjaltema D; Goede J; Frijlink HW
    Int J Pharm; 2006 Mar; 310(1-2):81-9. PubMed ID: 16442246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanocluster budesonide formulations enhance drug delivery through endotracheal tubes.
    Pornputtapitak W; El-Gendy N; Berkland C
    J Pharm Sci; 2012 Mar; 101(3):1063-72. PubMed ID: 22095757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and Evaluation of Surface Modified Lactose Particles for Improved Performance of Fluticasone Propionate Dry Powder Inhaler.
    Singh DJ; Jain RR; Soni PS; Abdul S; Darshana H; Gaikwad RV; Menon MD
    J Aerosol Med Pulm Drug Deliv; 2015 Aug; 28(4):254-67. PubMed ID: 25517187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of inhalable dry powder formulation of basic fibroblast growth factor.
    Ibrahim BM; Jun SW; Lee MY; Kang SH; Yeo Y
    Int J Pharm; 2010 Jan; 385(1-2):66-72. PubMed ID: 19853028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation and functionality of inhalation anhydrous lactose.
    Pitchayajittipong C; Price R; Shur J; Kaerger JS; Edge S
    Int J Pharm; 2010 May; 390(2):134-41. PubMed ID: 20100552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of milling and sieving on functionality of dry powder inhalation products.
    Steckel H; Markefka P; teWierik H; Kammelar R
    Int J Pharm; 2006 Feb; 309(1-2):51-9. PubMed ID: 16377105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of mechanical processing of dry powder inhaler carriers on drug aerosolization performance.
    Young PM; Chan HK; Chiou H; Edge S; Tee TH; Traini D
    J Pharm Sci; 2007 May; 96(5):1331-41. PubMed ID: 17455362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Humidity-induced changes of the aerodynamic properties of dry powder aerosol formulations containing different carriers.
    Zeng XM; MacRitchie HB; Marriott C; Martin GP
    Int J Pharm; 2007 Mar; 333(1-2):45-55. PubMed ID: 17064863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NanoCluster Itraconazole Formulations Provide a Potential Engineered Drug Particle Approach to Generate Effective Dry Powder Aerosols.
    Pornputtapitak W; El-Gendy N; Berkland C
    J Aerosol Med Pulm Drug Deliv; 2015 Oct; 28(5):341-52. PubMed ID: 25679514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capabilities and limitations of using powder rheology and permeability to predict dry powder inhaler performance.
    Cordts E; Steckel H
    Eur J Pharm Biopharm; 2012 Oct; 82(2):417-23. PubMed ID: 22902789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Budesonide Particles for Dry Powder Inhalation Prepared Using a Microfluidic Reactor Coupled With Ultrasonic Spray Freeze Drying.
    Saboti D; Maver U; Chan HK; Planinšek O
    J Pharm Sci; 2017 Jul; 106(7):1881-1888. PubMed ID: 28285981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excipient-free nanoporous microparticles of budesonide for pulmonary delivery.
    Nolan LM; Tajber L; McDonald BF; Barham AS; Corrigan OI; Healy AM
    Eur J Pharm Sci; 2009 Jul; 37(5):593-602. PubMed ID: 19463948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of primary crystallisation conditions on the mechanical and interfacial properties of micronised budesonide for dry powder inhalation.
    Kubavat HA; Shur J; Ruecroft G; Hipkiss D; Price R
    Int J Pharm; 2012 Jul; 430(1-2):26-33. PubMed ID: 22449413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and in vitro performance testing of multiple air classifier technology in a new disposable inhaler concept (Twincer) for high powder doses.
    de Boer AH; Hagedoorn P; Westerman EM; Le Brun PP; Heijerman HG; Frijlink HW
    Eur J Pharm Sci; 2006 Jun; 28(3):171-8. PubMed ID: 16650739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cohesive-adhesive balances in dry powder inhaler formulations II: influence on fine particle delivery characteristics.
    Begat P; Morton DA; Staniforth JN; Price R
    Pharm Res; 2004 Oct; 21(10):1826-33. PubMed ID: 15553229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.