These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 226231)

  • 1. Intra- and interganglionic synaptic connections in the CNS of Aplysia.
    Fredman SM; Jahan-Parwar B
    Brain Res Bull; 1979; 4(3):393-406. PubMed ID: 226231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of interganglionic synaptic connections in the control of pedal and parapodial movements in Aplysia.
    Jahan-Parwar B; Freedman SM
    Brain Res Bull; 1979; 4(3):407-20. PubMed ID: 226232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of pedal ganglia motor neurons in pedal wave generation in Aplysia.
    Fredman SM; Jahan-Parwar B
    Brain Res Bull; 1980; 5(2):179-93. PubMed ID: 7378857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural control of heartbeat in the leech and in some other invertebrates.
    Stent GS; Thompson WJ; Calabrese RL
    Physiol Rev; 1979 Jan; 59(1):101-36. PubMed ID: 220645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of pedal and parapodial movements in Aplysia. II. Cerebral ganglion neurons.
    Jahan-Parwar B; Fredman SM
    J Neurophysiol; 1978 May; 41(3):609-20. PubMed ID: 207828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and characterization of cerebral ganglion neurons that induce swimming and modulate swim-related pedal ganglion neurons in Aplysia brasiliana.
    Gamkrelidze GN; Laurienti PJ; Blankenship JE
    J Neurophysiol; 1995 Oct; 74(4):1444-62. PubMed ID: 8989384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A direct synaptic connexion between the left and right giant cells in Aplysia.
    Hughes GM; Tauc L
    J Physiol; 1968 Aug; 197(3):511-27. PubMed ID: 4299013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of cerebral-to-buccal interneurons implicated in the control of motor programs associated with feeding in Aplysia.
    Rosen SC; Teyke T; Miller MW; Weiss KR; Kupfermann I
    J Neurosci; 1991 Nov; 11(11):3630-55. PubMed ID: 1941100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Outputs of radula mechanoafferent neurons in Aplysia are modulated by motor neurons, interneurons, and sensory neurons.
    Rosen SC; Miller MW; Cropper EC; Kupfermann I
    J Neurophysiol; 2000 Mar; 83(3):1621-36. PubMed ID: 10712484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An identified histaminergic neuron can modulate the outputs of buccal-cerebral interneurons in Aplysia via presynaptic inhibition.
    Chiel HJ; Kupfermann I; Weiss KR
    J Neurosci; 1988 Jan; 8(1):49-63. PubMed ID: 3339418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological characteristics and central projections of two types of interneurons in the visual pathway of Hermissenda.
    Crow T; Tian LM
    J Neurophysiol; 2002 Jan; 87(1):322-32. PubMed ID: 11784753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory neuron produces heterosynaptic inhibition of the sensory-to-motor neuron synapse in Aplysia.
    Buonomano DV; Cleary LJ; Byrne JH
    Brain Res; 1992 Apr; 577(1):147-50. PubMed ID: 1521140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An identified interneuron contributes to aspects of six different behaviors in Aplysia.
    Xin Y; Weiss KR; Kupfermann I
    J Neurosci; 1996 Aug; 16(16):5266-79. PubMed ID: 8756454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced synaptic transmission at identified synaptic connections in the cerebral ganglion of Aplysia.
    Fredman SM
    Brain Res; 1991 Oct; 562(2):291-300. PubMed ID: 1663415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histaminergic synaptic transmission in the cerebral ganglion of Aplysia.
    McCaman RE; Weinreich D
    J Neurophysiol; 1985 Apr; 53(4):1016-37. PubMed ID: 2987431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of interneurons in controlling the tail-withdrawal reflex in Aplysia: a network model.
    White JA; Ziv I; Cleary LJ; Baxter DA; Byrne JH
    J Neurophysiol; 1993 Nov; 70(5):1777-86. PubMed ID: 8294952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitization of the gill and siphon withdrawal reflex of Aplysia: multiple sites of change in the neuronal network.
    Trudeau LE; Castellucci VF
    J Neurophysiol; 1993 Sep; 70(3):1210-20. PubMed ID: 8229169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ganglionic distribution of inputs and outputs of C-PR, a neuron involved in the generation of a food-induced arousal state in Aplysia.
    Teyke T; Xin Y; Weiss KR; Kupfermann I
    Invert Neurosci; 1997 Mar; 2(4):235-44. PubMed ID: 9460233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctional neuron CC6 in Aplysia exerts actions opposite to those of multifunctional neuron CC5.
    Xin Y; Weiss KR; Kupfermann I
    J Neurophysiol; 2000 May; 83(5):2473-81. PubMed ID: 10805649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of a multifunction neuron contributing to defensive arousal in Aplysia.
    Cleary LJ; Byrne JH
    J Neurophysiol; 1993 Nov; 70(5):1767-76. PubMed ID: 8294951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.