These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 22623109)
41. On fundamental and phenomenological models, structure and mechanical properties of collagen, elastin and glycosaminoglycan complexes. Viidik A; Danielson CC; Oxlund H Biorheology; 1982; 19(3):437-51. PubMed ID: 6286009 [TBL] [Abstract][Full Text] [Related]
42. A possible role for elastin ligands in the proteolytic degradation of arterial elastic lamellae in the rabbit. Kagan HM; Milbury PE; Kramsch DM Circ Res; 1979 Jan; 44(1):95-103. PubMed ID: 758237 [TBL] [Abstract][Full Text] [Related]
43. An experimental and theoretical study on the anisotropy of elastin network. Zou Y; Zhang Y Ann Biomed Eng; 2009 Aug; 37(8):1572-83. PubMed ID: 19484387 [TBL] [Abstract][Full Text] [Related]
44. Biosynthetic growth hormone changes the collagen and elastin contents and biomechanical properties of the rat aorta. Brüel A; Oxlund H Acta Endocrinol (Copenh); 1991 Jul; 125(1):49-57. PubMed ID: 1872125 [TBL] [Abstract][Full Text] [Related]
45. Catalase overexpression in aortic smooth muscle prevents pathological mechanical changes underlying abdominal aortic aneurysm formation. Maiellaro-Rafferty K; Weiss D; Joseph G; Wan W; Gleason RL; Taylor WR Am J Physiol Heart Circ Physiol; 2011 Aug; 301(2):H355-62. PubMed ID: 21551275 [TBL] [Abstract][Full Text] [Related]
46. Effect of glucose on the biomechanical function of arterial elastin. Wang Y; Zeinali-Davarani S; Davis EC; Zhang Y J Mech Behav Biomed Mater; 2015 Sep; 49():244-54. PubMed ID: 26042769 [TBL] [Abstract][Full Text] [Related]
47. Role of elastin anisotropy in structural strain energy functions of arterial tissue. Rezakhaniha R; Fonck E; Genoud C; Stergiopulos N Biomech Model Mechanobiol; 2011 Jul; 10(4):599-611. PubMed ID: 21058025 [TBL] [Abstract][Full Text] [Related]
48. Elastase-induced matrix degradation in arterial organ cultures: an in vitro model of aneurysmal disease. Wills A; Thompson MM; Crowther M; Brindle NP; Nasim A; Sayers RD; Bell PR J Vasc Surg; 1996 Oct; 24(4):667-79. PubMed ID: 8911416 [TBL] [Abstract][Full Text] [Related]
49. A pilot study on biaxial mechanical, collagen microstructural, and morphological characterizations of a resected human intracranial aneurysm tissue. Laurence DW; Homburg H; Yan F; Tang Q; Fung KM; Bohnstedt BN; Holzapfel GA; Lee CH Sci Rep; 2021 Feb; 11(1):3525. PubMed ID: 33568740 [TBL] [Abstract][Full Text] [Related]
50. Determinants of mechanical properties in the developing ovine thoracic aorta. Wells SM; Langille BL; Lee JM; Adamson SL Am J Physiol; 1999 Oct; 277(4):H1385-91. PubMed ID: 10516173 [TBL] [Abstract][Full Text] [Related]
51. Expression of integrin alpha5beta1 and the relationship to collagen and elastin content in human suprarenal and infrarenal aortas. Cheuk BL; Cheng SW Vasc Endovascular Surg; 2005; 39(3):245-51. PubMed ID: 15920653 [TBL] [Abstract][Full Text] [Related]
52. Structural and Functional Differences Between Porcine Aorta and Vena Cava. Mattson JM; Zhang Y J Biomech Eng; 2017 Jul; 139(7):0710071-8. PubMed ID: 28303272 [TBL] [Abstract][Full Text] [Related]
53. Multiphoton microscopy observations of 3D elastin and collagen fiber microstructure changes during pressurization in aortic media. Sugita S; Matsumoto T Biomech Model Mechanobiol; 2017 Jun; 16(3):763-773. PubMed ID: 27878400 [TBL] [Abstract][Full Text] [Related]
54. Elastolytic and collagenolytic studies of arteries. Implications for the mechanical properties of aneurysms. Dobrin PB; Baker WH; Gley WC Arch Surg; 1984 Apr; 119(4):405-9. PubMed ID: 6322726 [TBL] [Abstract][Full Text] [Related]
55. Mechanical forces regulate elastase activity and binding site availability in lung elastin. Jesudason R; Sato S; Parameswaran H; Araujo AD; Majumdar A; Allen PG; Bartolák-Suki E; Suki B Biophys J; 2010 Nov; 99(9):3076-83. PubMed ID: 21044606 [TBL] [Abstract][Full Text] [Related]
56. Crosslinked elastic fibers are necessary for low energy loss in the ascending aorta. Kim J; Staiculescu MC; Cocciolone AJ; Yanagisawa H; Mecham RP; Wagenseil JE J Biomech; 2017 Aug; 61():199-207. PubMed ID: 28778385 [TBL] [Abstract][Full Text] [Related]
57. Changes in biomechanical properties, composition of collagen and elastin, and advanced glycation endproducts of the rat aorta in relation to age. Brüel A; Oxlund H Atherosclerosis; 1996 Dec; 127(2):155-65. PubMed ID: 9125305 [TBL] [Abstract][Full Text] [Related]
58. Mechanical Properties of Arterial Elastin With Water Loss. Wang Y; Hahn J; Zhang Y J Biomech Eng; 2018 Apr; 140(4):0410121-8. PubMed ID: 29305611 [TBL] [Abstract][Full Text] [Related]
59. Contribution of elastin and collagen to the inflation response of the pig thoracic aorta: assessing elastin's role in mechanical homeostasis. Lillie MA; Armstrong TE; Gérard SG; Shadwick RE; Gosline JM J Biomech; 2012 Aug; 45(12):2133-41. PubMed ID: 22770359 [TBL] [Abstract][Full Text] [Related]
60. The effect of elastin damage on the mechanics of the aortic valve. Lee TC; Midura RJ; Hascall VC; Vesely I J Biomech; 2001 Feb; 34(2):203-10. PubMed ID: 11165284 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]