These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 22623188)

  • 1. Flexural stiffness and composition of the batoid propterygium as predictors of punting ability.
    Macesic LJ; Summers AP
    J Exp Biol; 2012 Jun; 215(Pt 12):2003-12. PubMed ID: 22623188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative punting kinematics and pelvic fin musculature of benthic batoids.
    Macesic LJ; Kajiura SM
    J Morphol; 2010 Oct; 271(10):1219-28. PubMed ID: 20623523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronized swimming: coordination of pelvic and pectoral fins during augmented punting by the freshwater stingray Potamotrygon orbignyi.
    Macesic LJ; Mulvaney D; Blevins EL
    Zoology (Jena); 2013 Jun; 116(3):144-50. PubMed ID: 23477972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and mechanical implications of the pectoral fin skeleton in the Longnose Skate (Chondrichthyes, Batoidea).
    Huang W; Hongjamrassilp W; Jung JY; Hastings PA; Lubarda VA; McKittrick J
    Acta Biomater; 2017 Mar; 51():393-407. PubMed ID: 28069513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Material properties and biochemical composition of mineralized vertebral cartilage in seven elasmobranch species (Chondrichthyes).
    Porter ME; Beltrán JL; Koob TJ; Summers AP
    J Exp Biol; 2006 Aug; 209(Pt 15):2920-8. PubMed ID: 16857876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Batoid wing skeletal structure: novel morphologies, mechanical implications, and phylogenetic patterns.
    Schaefer JT; Summers AP
    J Morphol; 2005 Jun; 264(3):298-313. PubMed ID: 15838841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical model of batoid (skates and rays) pectoral fins predicts the influence of skeletal structure on fin kinematics: implications for bio-inspired design.
    Russo RS; Blemker SS; Fish FE; Bart-Smith H
    Bioinspir Biomim; 2015 Jun; 10(4):046002. PubMed ID: 26079094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The contribution of mineral to the material properties of vertebral cartilage from the smooth-hound shark Mustelus californicus.
    Porter ME; Koob TJ; Summers AP
    J Exp Biol; 2007 Oct; 210(Pt 19):3319-27. PubMed ID: 17872985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skating by: low energetic costs of swimming in a batoid fish.
    Di Santo V; Kenaley CP
    J Exp Biol; 2016 Jun; 219(Pt 12):1804-7. PubMed ID: 27080535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pelvic girdle shape predicts locomotion and phylogeny in batoids.
    Ekstrom LJ; Kajiura SM
    J Morphol; 2014 Jan; 275(1):100-10. PubMed ID: 24142882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid-structure interactions of skeleton-reinforced fins: performance analysis of a paired fin in lift-based propulsion.
    Shoele K; Zhu Q
    J Exp Biol; 2009 Aug; 212(Pt 16):2679-90. PubMed ID: 19648413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Re-evaluation of batoid pectoral morphology reveals novel patterns of diversity among major lineages.
    Martinez CM; Rohlf FJ; Frisk MG
    J Morphol; 2016 Apr; 277(4):482-93. PubMed ID: 26869186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mineralized cartilage in the skeleton of chondrichthyan fishes.
    Dean MN; Summers AP
    Zoology (Jena); 2006; 109(2):164-8. PubMed ID: 16584875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaling of caterpillar body properties and its biomechanical implications for the use of a hydrostatic skeleton.
    Lin HT; Slate DJ; Paetsch CR; Dorfmann AL; Trimmer BA
    J Exp Biol; 2011 Apr; 214(Pt 7):1194-204. PubMed ID: 21389205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The material properties of acellular bone in a teleost fish.
    Horton JM; Summers AP
    J Exp Biol; 2009 May; 212(Pt 9):1413-20. PubMed ID: 19376962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastructural and developmental features of the tessellated endoskeleton of elasmobranchs (sharks and rays).
    Seidel R; Lyons K; Blumer M; Zaslansky P; Fratzl P; Weaver JC; Dean MN
    J Anat; 2016 Nov; 229(5):681-702. PubMed ID: 27557870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prey handling using whole-body fluid dynamics in batoids.
    Wilga CD; Maia A; Nauwelaerts S; Lauder GV
    Zoology (Jena); 2012 Feb; 115(1):47-57. PubMed ID: 22244456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical properties of the hindlimb bones of bullfrogs and cane toads in bending and torsion.
    Wilson MP; Espinoza NR; Shah SR; Blob RW
    Anat Rec (Hoboken); 2009 Jul; 292(7):935-44. PubMed ID: 19548305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pelvic fin musculature in skates: Morphological variation, phylogeny, and locomotor implications (Chondrichthyes: Batoidea: Rajiformes).
    Soares KDA
    Anat Rec (Hoboken); 2023 Jan; 306(1):51-59. PubMed ID: 35358355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties of stingray tesserae: High-resolution correlative analysis of mineral density and indentation moduli in tessellated cartilage.
    Seidel R; Roschger A; Li L; Bizzarro JJ; Zhang Q; Yin J; Yang T; Weaver JC; Fratzl P; Roschger P; Dean MN
    Acta Biomater; 2019 Sep; 96():421-435. PubMed ID: 31254686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.