These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 22623491)

  • 21. Changes in coordination, control and outcome as a result of extended practice on a novel motor skill.
    Hodges NJ; Hayes S; Horn RR; Williams AM
    Ergonomics; 2005 Sep 15-Nov 15; 48(11-14):1672-85. PubMed ID: 16338732
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of breathing on multijoint control of center of mass position during upright stance.
    Kuznetsov NA; Riley MA
    J Mot Behav; 2012; 44(4):241-53. PubMed ID: 22671566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single session motor learning demonstrated using a visuomotor task: Evidence from fMRI and behavioural analysis.
    Boe SG; Cassidy RJ; McIlroy WE; Graham SJ
    J Neurosci Methods; 2012 Aug; 209(2):308-19. PubMed ID: 22743802
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The loss function of sensorimotor learning.
    Körding KP; Wolpert DM
    Proc Natl Acad Sci U S A; 2004 Jun; 101(26):9839-42. PubMed ID: 15210973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multijoint dynamics and postural stability of the human arm.
    Perreault EJ; Kirsch RF; Crago PE
    Exp Brain Res; 2004 Aug; 157(4):507-17. PubMed ID: 15112115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aspects of joint coordination are preserved during pointing in persons with post-stroke hemiparesis.
    Reisman DS; Scholz JP
    Brain; 2003 Nov; 126(Pt 11):2510-27. PubMed ID: 12958080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sensory prediction errors drive cerebellum-dependent adaptation of reaching.
    Tseng YW; Diedrichsen J; Krakauer JW; Shadmehr R; Bastian AJ
    J Neurophysiol; 2007 Jul; 98(1):54-62. PubMed ID: 17507504
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stabilizing unstable object by means of kinematic redundancy.
    Masia L; Squeri V; Saha D; Burdet E; Sandini G; Morasso P
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3698-702. PubMed ID: 21096858
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new paradigm for human stick balancing: a suspended not an inverted pendulum.
    Lee KY; O'Dwyer N; Halaki M; Smith R
    Exp Brain Res; 2012 Sep; 221(3):309-28. PubMed ID: 22797784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human stick balancing: an intermittent control explanation.
    Gawthrop P; Lee KY; Halaki M; O'Dwyer N
    Biol Cybern; 2013 Dec; 107(6):637-52. PubMed ID: 23943300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of error augmentation on learning to walk on a narrow balance beam.
    Domingo A; Ferris DP
    Exp Brain Res; 2010 Oct; 206(4):359-70. PubMed ID: 20853102
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CNS learns stable, accurate, and efficient movements using a simple algorithm.
    Franklin DW; Burdet E; Tee KP; Osu R; Chew CM; Milner TE; Kawato M
    J Neurosci; 2008 Oct; 28(44):11165-73. PubMed ID: 18971459
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Does practicing a wide range of joint angle configurations lead to higher flexibility in a manual obstacle-avoidance target-pointing task?
    Tuitert I; Bootsma RJ; Schoemaker MM; Otten E; Mouton LJ; Bongers RM
    PLoS One; 2017; 12(7):e0181041. PubMed ID: 28700695
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Learning dynamic control of body roll orientation.
    Vimal VP; Lackner JR; DiZio P
    Exp Brain Res; 2016 Feb; 234(2):483-92. PubMed ID: 26525709
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Can the structure of motor variability predict learning rate?
    Barbado Murillo D; Caballero Sánchez C; Moreside J; Vera-García FJ; Moreno FJ
    J Exp Psychol Hum Percept Perform; 2017 Mar; 43(3):596-607. PubMed ID: 28095006
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Double-well dynamics of noise-driven control activation in human intermittent control: the case of stick balancing.
    Zgonnikov A; Lubashevsky I
    Cogn Process; 2015 Nov; 16(4):351-8. PubMed ID: 25925132
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intermittent appearances of saddle-type hyperbolic dynamics during human stick balancing on a manually controlled cart.
    Yoshikawa N; Suzuki Y; Kiyono K; Nomura T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3500-3. PubMed ID: 26737047
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Emotion and reward are dissociable from error during motor learning.
    Festini SB; Preston SD; Reuter-Lorenz PA; Seidler RD
    Exp Brain Res; 2016 Jun; 234(6):1385-94. PubMed ID: 26746312
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Perceptual and motor learning underlies human stick-balancing skill.
    Lee KY; O'Dwyer N; Halaki M; Smith R
    J Neurophysiol; 2015 Jan; 113(1):156-71. PubMed ID: 25298388
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sensorimotor Learning in Response to Errors in Task Performance.
    Sadaphal DP; Kumar A; Mutha PK
    eNeuro; 2022; 9(2):. PubMed ID: 35110383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.