These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 22623492)
21. Neofunctionalization of the secreted Tin2 effector in the fungal pathogen Ustilago maydis. Tanaka S; Schweizer G; Rössel N; Fukada F; Thines M; Kahmann R Nat Microbiol; 2019 Feb; 4(2):251-257. PubMed ID: 30510169 [TBL] [Abstract][Full Text] [Related]
22. Conservation of the Ustilago maydis effector See1 in related smuts. Redkar A; Villajuana-Bonequi M; Doehlemann G Plant Signal Behav; 2015; 10(12):e1086855. PubMed ID: 26357869 [TBL] [Abstract][Full Text] [Related]
23. The smut fungus Ustilago esculenta has a bipolar mating system with three idiomorphs larger than 500 kb. Liang SW; Huang YH; Chiu JY; Tseng HW; Huang JH; Shen WC Fungal Genet Biol; 2019 May; 126():61-74. PubMed ID: 30794950 [TBL] [Abstract][Full Text] [Related]
24. Alternative cell death mechanisms determine epidermal resistance in incompatible barley-Ustilago interactions. Hof A; Zechmann B; Schwammbach D; Hückelhoven R; Doehlemann G Mol Plant Microbe Interact; 2014 May; 27(5):403-14. PubMed ID: 24329174 [TBL] [Abstract][Full Text] [Related]
25. High Nucleotide Substitution Rates Associated with Retrotransposon Proliferation Drive Dynamic Secretome Evolution in Smut Pathogens. Depotter JRL; Ökmen B; Ebert MK; Beckers J; Kruse J; Thines M; Doehlemann G Microbiol Spectr; 2022 Oct; 10(5):e0034922. PubMed ID: 35972267 [TBL] [Abstract][Full Text] [Related]
26. Positively Selected Effector Genes and Their Contribution to Virulence in the Smut Fungus Sporisorium reilianum. Schweizer G; Münch K; Mannhaupt G; Schirawski J; Kahmann R; Dutheil JY Genome Biol Evol; 2018 Feb; 10(2):629-645. PubMed ID: 29390140 [TBL] [Abstract][Full Text] [Related]
27. The transition from a phytopathogenic smut ancestor to an anamorphic biocontrol agent deciphered by comparative whole-genome analysis. Lefebvre F; Joly DL; Labbé C; Teichmann B; Linning R; Belzile F; Bakkeren G; Bélanger RR Plant Cell; 2013 Jun; 25(6):1946-59. PubMed ID: 23800965 [TBL] [Abstract][Full Text] [Related]
28. Completion of the sexual cycle and demonstration of genetic recombination in Ustilago maydis in vitro. Ruiz-Herrera J; León-Ramírez C; Cabrera-Ponce JL; Martínez-Espinoza AD; Herrera-Estrella L Mol Gen Genet; 1999 Oct; 262(3):468-72. PubMed ID: 10589834 [TBL] [Abstract][Full Text] [Related]
29. Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis. van der Linde K; Kastner C; Kumlehn J; Kahmann R; Doehlemann G New Phytol; 2011 Jan; 189(2):471-83. PubMed ID: 21039559 [TBL] [Abstract][Full Text] [Related]
30. The a and b loci of Ustilago maydis hybridize with DNA sequences from other smut fungi. Bakkeren G; Gibbard B; Yee A; Froeliger E; Leong S; Kronstad J Mol Plant Microbe Interact; 1992; 5(4):347-55. PubMed ID: 1515669 [TBL] [Abstract][Full Text] [Related]
31. Gene loss rather than gene gain is associated with a host jump from monocots to dicots in the Smut Fungus Melanopsichium pennsylvanicum. Sharma R; Mishra B; Runge F; Thines M Genome Biol Evol; 2014 Jul; 6(8):2034-49. PubMed ID: 25062916 [TBL] [Abstract][Full Text] [Related]
32. Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen. Frantzeskakis L; Kracher B; Kusch S; Yoshikawa-Maekawa M; Bauer S; Pedersen C; Spanu PD; Maekawa T; Schulze-Lefert P; Panstruga R BMC Genomics; 2018 May; 19(1):381. PubMed ID: 29788921 [TBL] [Abstract][Full Text] [Related]
33. Mating factor linkage and genome evolution in basidiomycetous pathogens of cereals. Bakkeren G; Jiang G; Warren RL; Butterfield Y; Shin H; Chiu R; Linning R; Schein J; Lee N; Hu G; Kupfer DM; Tang Y; Roe BA; Jones S; Marra M; Kronstad JW Fungal Genet Biol; 2006 Sep; 43(9):655-66. PubMed ID: 16793293 [TBL] [Abstract][Full Text] [Related]
34. Assessment of Ustilago maydis as a fungal model for root infection studies. Mazaheri-Naeini M; Sabbagh SK; Martinez Y; Séjalon-Delmas N; Roux C Fungal Biol; 2015 Mar; 119(2-3):145-53. PubMed ID: 25749366 [TBL] [Abstract][Full Text] [Related]
35. Smut infection of perennial hosts: the genome and the transcriptome of the Brassicaceae smut fungus Thecaphora thlaspeos reveal functionally conserved and novel effectors. Courville KJ; Frantzeskakis L; Gul S; Haeger N; Kellner R; Heßler N; Day B; Usadel B; Gupta YK; van Esse HP; Brachmann A; Kemen E; Feldbrügge M; Göhre V New Phytol; 2019 May; 222(3):1474-1492. PubMed ID: 30663769 [TBL] [Abstract][Full Text] [Related]
36. Comparative Genomics of Smut Pathogens: Insights From Orphans and Positively Selected Genes Into Host Specialization. Benevenuto J; Teixeira-Silva NS; Kuramae EE; Croll D; Monteiro-Vitorello CB Front Microbiol; 2018; 9():660. PubMed ID: 29681893 [TBL] [Abstract][Full Text] [Related]
37. Patterns of variation at Ustilago maydis virulence clusters 2A and 19A largely reflect the demographic history of its populations. Kellner R; Hanschke C; Begerow D PLoS One; 2014; 9(6):e98837. PubMed ID: 24887029 [TBL] [Abstract][Full Text] [Related]
38. A Novel Core Effector Vp1 Promotes Fungal Colonization and Virulence of Hoang CV; Bhaskar CK; Ma LS J Fungi (Basel); 2021 Jul; 7(8):. PubMed ID: 34436129 [TBL] [Abstract][Full Text] [Related]
39. Introduction of large DNA inserts into the barley pathogenic fungus, Ustilago hordei, via recombined binary BAC vectors and Agrobacterium-mediated transformation. Ali S; Bakkeren G Curr Genet; 2011 Feb; 57(1):63-73. PubMed ID: 20936474 [TBL] [Abstract][Full Text] [Related]
40. Structural and functional analysis of the cerato-platanin-like protein Cpl1 suggests diverging functions in smut fungi. Weiland P; Dempwolff F; Steinchen W; Freibert SA; Tian H; Glatter T; Martin R; Thomma BPHJ; Bange G; Altegoer F Mol Plant Pathol; 2023 Jul; 24(7):768-787. PubMed ID: 37171083 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]