BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 22623499)

  • 1. Micellar electrokinetic chromatography systems for the separation of mixtures of charged and uncharged compounds.
    Lamalle C; Servais AC; Fradi I; Crommen J; Fillet M
    J Sep Sci; 2012 Aug; 35(15):1933-9. PubMed ID: 22623499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micelle to solvent stacking of organic cations in micellar electrokinetic chromatography with sodium dodecyl sulfate.
    Quirino JP; Aranas AT
    J Chromatogr A; 2011 Oct; 1218(41):7377-83. PubMed ID: 21903217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cationic surfactants for micellar electrokinetic chromatography: 2. Representative applications to acidic, basic, and hydrophobic analytes.
    Schnee VP; Palmer CP
    Electrophoresis; 2008 Feb; 29(4):777-82. PubMed ID: 18297645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of organic modifiers on solute retention and electrokinetic migrations in micellar electrokinetic capillary chromatography.
    Liu Z; Zou H; Ye M; Ni J; Zhang Y
    Electrophoresis; 1999 Oct; 20(14):2898-908. PubMed ID: 10546826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation of hydrophobic solutes by organic-solvent-based micellar electrokinetic chromatography using cation surfactants.
    Gong S; Liu F; Li W; Gao F; Gao C; Liao Y; Liu H
    J Chromatogr A; 2006 Jul; 1121(2):274-9. PubMed ID: 16735039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient separation of isomeric epoxy fatty acids by micellar electrokinetic chromatography.
    Wan H; Blomberg LG; Hamberg M
    Electrophoresis; 1999 Jan; 20(1):132-7. PubMed ID: 10065969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adjusting selectivity in micellar electrokinetic capillary chromatography with 1,2-hexanediol.
    Allen DJ; Wall WE; Denson KD; Smith JT
    Electrophoresis; 1999 Jan; 20(1):100-10. PubMed ID: 10065965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the SDS-induced electroosmotic flow in micellar electrokinetic chromatography with cationic polyelectrolyte-coated capillaries.
    Pranaityte B; Padarauskas A
    Electrophoresis; 2006 May; 27(10):1915-21. PubMed ID: 16596708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neutral analyte focusing by micelle collapse in micellar electrokinetic chromatography.
    Quirino JP
    J Chromatogr A; 2008 Dec; 1214(1-2):171-7. PubMed ID: 18990396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation of aromatic hydrophobic sulfonates by micellar electrokinetic chromatography.
    Ehala S; Vaher M; Kaljurand M
    J Chromatogr A; 2007 Aug; 1161(1-2):322-6. PubMed ID: 17628574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of lignans using micellar electrokinetic chromatography.
    Kuo CH; Lee SS; Chang HY; Sun SW
    Electrophoresis; 2003 Mar; 24(6):1047-53. PubMed ID: 12658694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of hydroxy-s-triazines with sodium dodecyl sulfate-micelles investigated by micellar capillary electrophoresis.
    Freitag D; Schmitt-Kopplin P; Simon R; Kaune A; Kettrup A
    Electrophoresis; 1999 Jun; 20(7):1568-77. PubMed ID: 10424482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capillary zone electrophoresis and micellar electrokinetic chromatography of solution of polyaniline particles.
    Krivánková L; Pantucková P; Bocek P
    Electrophoresis; 2000 Feb; 21(3):627-32. PubMed ID: 10726769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of the separation of ionizable compounds in micellar electrokinetic chromatography by simultaneous change of pH and SDS concentration.
    Téllez A; Fuguet E; Rosés M
    Electrophoresis; 2007 Oct; 28(20):3712-21. PubMed ID: 17941120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sample stacking by field-amplified sample injection and sweeping for simultaneous analysis of acidic and basic components in clinic application.
    Wei SY; Wang LF; Yang YH; Yeh HH; Chen YC; Chen SH
    Electrophoresis; 2012 Jun; 33(11):1571-81. PubMed ID: 22736359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of micelles and anionic cyclodextrins as pseudostationary phases for the capillary electrophoresis separation of oligosaccharides derivatized with 2-amino-benzamide.
    Tran NT; Taverna M; Deschamps FS; Morin P; Ferrier D
    Electrophoresis; 1998 Nov; 19(15):2630-8. PubMed ID: 9848671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of synthesized alpha-vitamin E by micellar electrokinetic chromatography.
    Zhao J; Yang G; Duan H; Li J
    Electrophoresis; 2001 Jan; 22(1):151-4. PubMed ID: 11197165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel alkyl-modified anionic siloxanes as pseudostationary phases for electrokinetic chromatography: II. Selectivity studied by linear solvation energy relationships.
    Peterson DS; Palmer CP
    Electrophoresis; 2001 Oct; 22(16):3562-6. PubMed ID: 11669542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imidazolium-based ionic liquid-type surfactant as pseudostationary phase in micellar electrokinetic chromatography of highly hydrophilic urinary nucleosides.
    Rageh AH; Pyell U
    J Chromatogr A; 2013 Nov; 1316():135-46. PubMed ID: 24119753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microemulsion electrokinetic chromatography of drugs varying in charge and hydrophobicity: I. Impact of parameters on separation performance evaluated by multiple linear regression models.
    Harang V; Eriksson J; Sänger-van de Griend CE; Jacobsson SP; Westerlund D
    Electrophoresis; 2004 Jan; 25(1):80-93. PubMed ID: 14730572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.