These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 22623686)
1. LTP induction translocates cortactin at distant synapses in wild-type but not Fmr1 knock-out mice. Seese RR; Babayan AH; Katz AM; Cox CD; Lauterborn JC; Lynch G; Gall CM J Neurosci; 2012 May; 32(21):7403-13. PubMed ID: 22623686 [TBL] [Abstract][Full Text] [Related]
2. Physiological activation of synaptic Rac>PAK (p-21 activated kinase) signaling is defective in a mouse model of fragile X syndrome. Chen LY; Rex CS; Babayan AH; Kramár EA; Lynch G; Gall CM; Lauterborn JC J Neurosci; 2010 Aug; 30(33):10977-84. PubMed ID: 20720104 [TBL] [Abstract][Full Text] [Related]
3. Brain-derived neurotrophic factor rescues synaptic plasticity in a mouse model of fragile X syndrome. Lauterborn JC; Rex CS; Kramár E; Chen LY; Pandyarajan V; Lynch G; Gall CM J Neurosci; 2007 Oct; 27(40):10685-94. PubMed ID: 17913902 [TBL] [Abstract][Full Text] [Related]
4. Fragile X mental retardation protein regulates heterosynaptic plasticity in the hippocampus. Connor SA; Hoeffer CA; Klann E; Nguyen PV Learn Mem; 2011; 18(4):207-20. PubMed ID: 21430043 [TBL] [Abstract][Full Text] [Related]
5. Fragile X mental retardation protein is required for chemically-induced long-term potentiation of the hippocampus in adult mice. Shang Y; Wang H; Mercaldo V; Li X; Chen T; Zhuo M J Neurochem; 2009 Nov; 111(3):635-46. PubMed ID: 19659572 [TBL] [Abstract][Full Text] [Related]
6. Age-dependent and selective impairment of long-term potentiation in the anterior piriform cortex of mice lacking the fragile X mental retardation protein. Larson J; Jessen RE; Kim D; Fine AK; du Hoffmann J J Neurosci; 2005 Oct; 25(41):9460-9. PubMed ID: 16221856 [TBL] [Abstract][Full Text] [Related]
7. Elevated progranulin contributes to synaptic and learning deficit due to loss of fragile X mental retardation protein. Zhang K; Li YJ; Guo Y; Zheng KY; Yang Q; Yang L; Wang XS; Song Q; Chen T; Zhuo M; Zhao MG Brain; 2017 Dec; 140(12):3215-3232. PubMed ID: 29096020 [TBL] [Abstract][Full Text] [Related]
8. Loss of the fragile X mental retardation protein decouples metabotropic glutamate receptor dependent priming of long-term potentiation from protein synthesis. Auerbach BD; Bear MF J Neurophysiol; 2010 Aug; 104(2):1047-51. PubMed ID: 20554840 [TBL] [Abstract][Full Text] [Related]
9. Impaired presynaptic long-term potentiation in the anterior cingulate cortex of Fmr1 knock-out mice. Koga K; Liu MG; Qiu S; Song Q; O'Den G; Chen T; Zhuo M J Neurosci; 2015 Feb; 35(5):2033-43. PubMed ID: 25653361 [TBL] [Abstract][Full Text] [Related]
10. Group I metabotropic glutamate receptor signaling via Galpha q/Galpha 11 secures the induction of long-term potentiation in the hippocampal area CA1. Miura M; Watanabe M; Offermanns S; Simon MI; Kano M J Neurosci; 2002 Oct; 22(19):8379-90. PubMed ID: 12351712 [TBL] [Abstract][Full Text] [Related]
11. Altered hippocampal synaptic plasticity in the FMR1 gene family knockout mouse models. Zhang J; Hou L; Klann E; Nelson DL J Neurophysiol; 2009 May; 101(5):2572-80. PubMed ID: 19244359 [TBL] [Abstract][Full Text] [Related]
12. Phosphatidylinositol 3-kinase regulates the induction of long-term potentiation through extracellular signal-related kinase-independent mechanisms. Opazo P; Watabe AM; Grant SG; O'Dell TJ J Neurosci; 2003 May; 23(9):3679-88. PubMed ID: 12736339 [TBL] [Abstract][Full Text] [Related]
13. A molecular circuit composed of CPEB-1 and c-Jun controls growth hormone-mediated synaptic plasticity in the mouse hippocampus. Zearfoss NR; Alarcon JM; Trifilieff P; Kandel E; Richter JD J Neurosci; 2008 Aug; 28(34):8502-9. PubMed ID: 18716208 [TBL] [Abstract][Full Text] [Related]
14. SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. Komiyama NH; Watabe AM; Carlisle HJ; Porter K; Charlesworth P; Monti J; Strathdee DJ; O'Carroll CM; Martin SJ; Morris RG; O'Dell TJ; Grant SG J Neurosci; 2002 Nov; 22(22):9721-32. PubMed ID: 12427827 [TBL] [Abstract][Full Text] [Related]
15. Changes in synaptic morphology accompany actin signaling during LTP. Chen LY; Rex CS; Casale MS; Gall CM; Lynch G J Neurosci; 2007 May; 27(20):5363-72. PubMed ID: 17507558 [TBL] [Abstract][Full Text] [Related]
16. Therapeutic significance of NR2B-containing NMDA receptors and mGluR5 metabotropic glutamate receptors in mediating the synaptotoxic effects of β-amyloid oligomers on long-term potentiation (LTP) in murine hippocampal slices. Rammes G; Hasenjäger A; Sroka-Saidi K; Deussing JM; Parsons CG Neuropharmacology; 2011 May; 60(6):982-90. PubMed ID: 21310164 [TBL] [Abstract][Full Text] [Related]
17. Genetic and pharmacological demonstration of differential recruitment of cAMP-dependent protein kinases by synaptic activity. Woo NH; Duffy SN; Abel T; Nguyen PV J Neurophysiol; 2000 Dec; 84(6):2739-45. PubMed ID: 11110804 [TBL] [Abstract][Full Text] [Related]
18. Regulation of synapse composition by protein acetylation: the role of acetylated cortactin. Catarino T; Ribeiro L; Santos SD; Carvalho AL J Cell Sci; 2013 Jan; 126(Pt 1):149-62. PubMed ID: 23038781 [TBL] [Abstract][Full Text] [Related]
19. Increased Training Intensity Induces Proper Membrane Localization of Actin Remodeling Proteins in the Hippocampus Preventing Cognitive Deficits: Implications for Fragile X Syndrome. Martinez LA; Tejada-Simon MV Mol Neurobiol; 2018 Jun; 55(6):4529-4542. PubMed ID: 28688003 [TBL] [Abstract][Full Text] [Related]
20. Ampakines promote spine actin polymerization, long-term potentiation, and learning in a mouse model of Angelman syndrome. Baudry M; Kramar E; Xu X; Zadran H; Moreno S; Lynch G; Gall C; Bi X Neurobiol Dis; 2012 Aug; 47(2):210-5. PubMed ID: 22525571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]