BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 22623769)

  • 21. Identification of ARKL1 as a Negative Regulator of Epstein-Barr Virus Reactivation.
    Siddiqi UZ; Vaidya AS; Li X; Marcon E; Tsao SW; Greenblatt J; Frappier L
    J Virol; 2019 Oct; 93(20):. PubMed ID: 31341047
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of a negative cis element within the ZII domain of the Epstein-Barr virus lytic switch BZLF1 gene promoter.
    Liu P; Liu S; Speck SH
    J Virol; 1998 Oct; 72(10):8230-9. PubMed ID: 9733866
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The lytic phase of epstein-barr virus requires a viral genome with 5-methylcytosine residues in CpG sites.
    Kalla M; Göbel C; Hammerschmidt W
    J Virol; 2012 Jan; 86(1):447-58. PubMed ID: 22031942
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ZEB negatively regulates the lytic-switch BZLF1 gene promoter of Epstein-Barr virus.
    Kraus RJ; Perrigoue JG; Mertz JE
    J Virol; 2003 Jan; 77(1):199-207. PubMed ID: 12477825
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of the histone H3 lysine 9 methyltransferase Suv39 h1 in maintaining Epsteinn-Barr virus latency in B95-8 cells.
    Imai K; Kamio N; Cueno ME; Saito Y; Inoue H; Saito I; Ochiai K
    FEBS J; 2014 May; 281(9):2148-58. PubMed ID: 24588869
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Viral genome methylation differentially affects the ability of BZLF1 versus BRLF1 to activate Epstein-Barr virus lytic gene expression and viral replication.
    Wille CK; Nawandar DM; Panfil AR; Ko MM; Hagemeier SR; Kenney SC
    J Virol; 2013 Jan; 87(2):935-50. PubMed ID: 23135711
    [TBL] [Abstract][Full Text] [Related]  

  • 27. BZLF1 transcript variants in Epstein-Barr virus-positive epithelial cell lines.
    Needham J; Adamson AL
    Virus Genes; 2019 Dec; 55(6):779-785. PubMed ID: 31552622
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CpG-methylation regulates a class of Epstein-Barr virus promoters.
    Bergbauer M; Kalla M; Schmeinck A; Göbel C; Rothbauer U; Eck S; Benet-Pagès A; Strom TM; Hammerschmidt W
    PLoS Pathog; 2010 Sep; 6(9):e1001114. PubMed ID: 20886097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epstein-Barr virus BZLF1 gene, a switch from latency to lytic infection, is expressed as an immediate-early gene after primary infection of B lymphocytes.
    Wen W; Iwakiri D; Yamamoto K; Maruo S; Kanda T; Takada K
    J Virol; 2007 Jan; 81(2):1037-42. PubMed ID: 17079287
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rescue of the Epstein-Barr virus BZLF1 mutant, Z(S186A), early gene activation defect by the BRLF1 gene product.
    Adamson AL; Kenney SC
    Virology; 1998 Nov; 251(1):187-97. PubMed ID: 9813214
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Epstein-Barr virus (EBV) EB1/Zta protein provided in trans and competent for the activation of productive cycle genes does not activate the BZLF1 gene in the EBV genome.
    Le Roux F; Sergeant A; Corbo L
    J Gen Virol; 1996 Mar; 77 ( Pt 3)():501-9. PubMed ID: 8601788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of activation of the BNLF2a immune evasion gene of Epstein-Barr virus by Zta.
    Almohammed R; Osborn K; Ramasubramanyan S; Perez-Fernandez IBN; Godfrey A; Mancini EJ; Sinclair AJ
    J Gen Virol; 2018 Jun; 99(6):805-817. PubMed ID: 29580369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Epstein-Barr virus induces global changes in cellular mRNA isoform usage that are important for the maintenance of latency.
    Homa NJ; Salinas R; Forte E; Robinson TJ; Garcia-Blanco MA; Luftig MA
    J Virol; 2013 Nov; 87(22):12291-301. PubMed ID: 24027308
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RNA Sequencing Analyses of Gene Expression during Epstein-Barr Virus Infection of Primary B Lymphocytes.
    Wang C; Li D; Zhang L; Jiang S; Liang J; Narita Y; Hou I; Zhong Q; Zheng Z; Xiao H; Gewurz BE; Teng M; Zhao B
    J Virol; 2019 Jul; 93(13):. PubMed ID: 31019051
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contribution of myocyte enhancer factor 2 family transcription factors to BZLF1 expression in Epstein-Barr virus reactivation from latency.
    Murata T; Narita Y; Sugimoto A; Kawashima D; Kanda T; Tsurumi T
    J Virol; 2013 Sep; 87(18):10148-62. PubMed ID: 23843637
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Histone hyperacetylation occurs on promoters of lytic cycle regulatory genes in Epstein-Barr virus-infected cell lines which are refractory to disruption of latency by histone deacetylase inhibitors.
    Countryman JK; Gradoville L; Miller G
    J Virol; 2008 May; 82(10):4706-19. PubMed ID: 18337569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation and dysregulation of Epstein-Barr virus latency: implications for the development of autoimmune diseases.
    Niller HH; Wolf H; Minarovits J
    Autoimmunity; 2008 May; 41(4):298-328. PubMed ID: 18432410
    [TBL] [Abstract][Full Text] [Related]  

  • 38. To be or not IIb: a multi-step process for Epstein-Barr virus latency establishment and consequences for B cell tumorigenesis.
    Price AM; Luftig MA
    PLoS Pathog; 2015 Mar; 11(3):e1004656. PubMed ID: 25790223
    [No Abstract]   [Full Text] [Related]  

  • 39. Activation of the BRLF1 promoter and lytic cycle of Epstein-Barr virus by histone acetylation.
    Chang LK; Liu ST
    Nucleic Acids Res; 2000 Oct; 28(20):3918-25. PubMed ID: 11024171
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Epstein-Barr virus polymerase processivity factor enhances BALF2 promoter transcription as a coactivator for the BZLF1 immediate-early protein.
    Nakayama S; Murata T; Murayama K; Yasui Y; Sato Y; Kudoh A; Iwahori S; Isomura H; Kanda T; Tsurumi T
    J Biol Chem; 2009 Aug; 284(32):21557-68. PubMed ID: 19491105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.