These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 22624321)

  • 1. Native ecotypic variation and the role of host identity in the spread of an invasive herbivore, Cactoblastis cactorum.
    Brooks CP; Ervin GN; Varone L; Logarzo GA
    Ecology; 2012 Feb; 93(2):402-10. PubMed ID: 22624321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local dispersal pathways during the invasion of the cactus moth, Cactoblastis cactorum, within North America and the Caribbean.
    Andraca-Gómez G; Lombaert E; Ordano M; Pérez-Ishiwara R; Boege K; Domínguez CA; Fornoni J
    Sci Rep; 2020 Jul; 10(1):11012. PubMed ID: 32620784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targets of an invasive species: oviposition preference and larval performance of Cactoblastis cactorum (Lepidoptera: Pyralidae) on 14 North American opuntioid cacti.
    Jezorek HA; Stiling PD; Carpenter JE
    Environ Entomol; 2010 Dec; 39(6):1884-92. PubMed ID: 22182554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Niche shifts and environmental non-equilibrium undermine the usefulness of ecological niche models for invasion risk assessments.
    Pili AN; Tingley R; Sy EY; Diesmos MLL; Diesmos AC
    Sci Rep; 2020 May; 10(1):7972. PubMed ID: 32409706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Realized niche shift during a global biological invasion.
    Tingley R; Vallinoto M; Sequeira F; Kearney MR
    Proc Natl Acad Sci U S A; 2014 Jul; 111(28):10233-8. PubMed ID: 24982155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preferred prey reduce species realized niche shift and improve range expansion prediction.
    Han L; Zhang Z; Tu W; Zhang Q; Hong Y; Chen S; Lin Z; Gu S; Du Y; Wu Z; Liu X
    Sci Total Environ; 2023 Feb; 859(Pt 2):160370. PubMed ID: 36414055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climatic and soil characteristics account for the genetic structure of the invasive cactus moth
    Andraca-Gómez G; Ordano M; Lira-Noriega A; Osorio-Olvera L; Domínguez CA; Fornoni J
    PeerJ; 2024; 12():e16861. PubMed ID: 38361769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecological Niche Modeling to Calculate Ideal Sites to Introduce a Natural Enemy: The Case of
    Pérez-De la O NB; Espinosa-Zaragoza S; López-Martínez V; D Hight S; Varone L
    Insects; 2020 Jul; 11(7):. PubMed ID: 32707668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lethal effect of
    Varone L; Faltlhauser A; Fuentes Corona M; Garrido S; Cichón L; Cecere MC; Hight SD; Bruzzone O
    Bull Entomol Res; 2024 Feb; 114(1):149-158. PubMed ID: 38268111
    [No Abstract]   [Full Text] [Related]  

  • 10. Niche conservatism and the invasive potential of the wild boar.
    Sales LP; Ribeiro BR; Hayward MW; Paglia A; Passamani M; Loyola R
    J Anim Ecol; 2017 Sep; 86(5):1214-1223. PubMed ID: 28656732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the effects of species niche shifts on the potential distribution of Tuta absoluta (Lepidoptera: Gelechiidae) by using global occurrence data.
    Yuan X; Zhang Y; Hu L; Sang W; Yang Z
    J Insect Sci; 2024 May; 24(3):. PubMed ID: 38771255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selecting for tolerance against pathogens and herbivores to enhance success of reintroduction and translocation.
    Venesky MD; Mendelson Iii JR; Sears BF; Stiling P; Rohr JR
    Conserv Biol; 2012 Aug; 26(4):586-92. PubMed ID: 22809350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. With or without you: Effects of the concurrent range expansion of an herbivore and its natural enemy on native species interactions.
    Carrasco D; Desurmont GA; Laplanche D; Proffit M; Gols R; Becher PG; Larsson MC; Turlings TCJ; Anderson P
    Glob Chang Biol; 2018 Feb; 24(2):631-643. PubMed ID: 28731514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climatic niche shifts are common in introduced plants.
    Atwater DZ; Ervine C; Barney JN
    Nat Ecol Evol; 2018 Jan; 2(1):34-43. PubMed ID: 29203919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ecological niche transferability using invasive species as a case study.
    Fernández M; Hamilton H
    PLoS One; 2015; 10(3):e0119891. PubMed ID: 25785858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lower resistance and higher tolerance of invasive host plants: biocontrol agents reach high densities but exert weak control.
    Wang Y; Huang W; Siemann E; Zou J; Wheeler GS; Carrillo J; Ding J
    Ecol Appl; 2011 Apr; 21(3):729-38. PubMed ID: 21639040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solidago gigantea plants from nonnative ranges compensate more in response to damage than plants from the native range.
    Liao H; Gurgel PCS; Pal RW; Hooper D; Callaway RM
    Ecology; 2016 Sep; 97(9):2355-2363. PubMed ID: 27859091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enemy release promotes range expansion in a host plant.
    Lakeman-Fraser P; Ewers RM
    Oecologia; 2013 Aug; 172(4):1203-12. PubMed ID: 23239216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatio-temporal variation of biotic factors underpins contemporary range dynamics of congeners.
    Naujokaitis-Lewis I; Fortin MJ
    Glob Chang Biol; 2016 Mar; 22(3):1201-13. PubMed ID: 26716759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of herbivory and weather on the vital rates of two closely related cactus species.
    Sauby KE; Kilmer J; Christman MC; Holt RD; Marsico TD
    Ecol Evol; 2017 Sep; 7(17):6996-7009. PubMed ID: 28904778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.