These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 22624380)

  • 21. Decolorizing activity of malachite green and its mechanisms involved in dye biodegradation by Achromobacter xylosoxidans MG1.
    Wang J; Qiao M; Wei K; Ding J; Liu Z; Zhang KQ; Huang X
    J Mol Microbiol Biotechnol; 2011; 20(4):220-7. PubMed ID: 21865764
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Partial degradation mechanisms of malachite green and methyl violet B by Shewanella decolorationis NTOU1 under anaerobic conditions.
    Chen CH; Chang CF; Liu SM
    J Hazard Mater; 2010 May; 177(1-3):281-9. PubMed ID: 20060225
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degradation pathway of malachite green in a novel dual-tank photoelectrochemical catalytic reactor.
    Diao Z; Li M; Zeng F; Song L; Qiu R
    J Hazard Mater; 2013 Sep; 260():585-92. PubMed ID: 23811633
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation and characterization of Pseudomonas otitidis WL-13 and its capacity to decolorize triphenylmethane dyes.
    Wu J; Jung BG; Kim KS; Lee YC; Sung NC
    J Environ Sci (China); 2009; 21(7):960-4. PubMed ID: 19862963
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photodegradation of malachite green under simulated and natural irradiation: kinetics, products, and pathways.
    Yong L; Zhanqi G; Yuefei J; Xiaobin H; Cheng S; Shaogui Y; Lianhong W; Qingeng W; Die F
    J Hazard Mater; 2015 Mar; 285():127-36. PubMed ID: 25497025
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Laccase-mediator system in the decolorization of different types of recalcitrant dyes.
    Hu MR; Chao YP; Zhang GQ; Xue ZQ; Qian S
    J Ind Microbiol Biotechnol; 2009 Jan; 36(1):45-51. PubMed ID: 18830647
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Degradation of triphenylmethane dyes using a temperature and pH stable spore laccase from a novel strain of Bacillus vallismortis.
    Zhang C; Diao H; Lu F; Bie X; Wang Y; Lu Z
    Bioresour Technol; 2012 Dec; 126():80-6. PubMed ID: 23073092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface Display of Bacterial Laccase CotA on Escherichia coli Cells and its Application in Industrial Dye Decolorization.
    Zhang Y; Dong W; Lv Z; Liu J; Zhang W; Zhou J; Xin F; Ma J; Jiang M
    Mol Biotechnol; 2018 Sep; 60(9):681-689. PubMed ID: 30030754
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetics and equilibrium studies of malachite green adsorption on rice straw-derived char.
    Hameed BH; El-Khaiary MI
    J Hazard Mater; 2008 May; 153(1-2):701-8. PubMed ID: 17942219
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adsorption kinetics of removal of a toxic dye, Malachite Green, from wastewater by using hen feathers.
    Mittal A
    J Hazard Mater; 2006 May; 133(1-3):196-202. PubMed ID: 16326001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthetic dye decolorization capacity of white rot fungus Dichomitus squalens.
    Eichlerová I; Homolka L; Nerud F
    Bioresour Technol; 2006 Nov; 97(16):2153-9. PubMed ID: 16257199
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biodecolorization and biodegradation potential of recalcitrant triphenylmethane dyes by Coriolopsis sp. isolated from compost.
    Chen SH; Yien Ting AS
    J Environ Manage; 2015 Mar; 150():274-280. PubMed ID: 25527986
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of synthetic dye decolorization capacity in Ischnoderma resinosum.
    Eichlerová I; Homolka L; Nerud F
    J Ind Microbiol Biotechnol; 2006 Sep; 33(9):759-66. PubMed ID: 16491363
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Biosorption of crystal violet and malachite green by Rhodotorula graminis Y-5].
    Hu R; Huang JB; Yang ZP; Cheng ZZ; Jing DJ; Huang QM
    Ying Yong Sheng Tai Xue Bao; 2011 Dec; 22(12):3293-9. PubMed ID: 22384600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection of double bond-ozone stoichiometry by an iodimetric method during ozonation processes.
    Kusvuran E; Gulnaz O; Samil A; Erbil M
    J Hazard Mater; 2010 Mar; 175(1-3):410-6. PubMed ID: 19896267
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facile green synthesis of functional nanoscale zero-valent iron and studies of its activity toward ultrasound-enhanced decolorization of cationic dyes.
    Wang X; Wang A; Ma J; Fu M
    Chemosphere; 2017 Jan; 166():80-88. PubMed ID: 27689887
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Removal of triphenylmethane dyes by bacterial consortium.
    Cheriaa J; Khaireddine M; Rouabhia M; Bakhrouf A
    ScientificWorldJournal; 2012; 2012():512454. PubMed ID: 22623907
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Validation of a method for the determination of triphenylmethane dyes in trout and shrimp with superior extraction efficiency.
    Eich J; Bohm DA; Holzkamp D; Mankertz J
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2020 Jan; 37(1):84-93. PubMed ID: 31697217
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phytoremediation of triphenylmethane dyes by overexpressing a Citrobacter sp. triphenylmethane reductase in transgenic Arabidopsis.
    Fu XY; Zhao W; Xiong AS; Tian YS; Zhu B; Peng RH; Yao QH
    Appl Microbiol Biotechnol; 2013 Feb; 97(4):1799-806. PubMed ID: 22573270
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural insight into bioremediation of triphenylmethane dyes by Citrobacter sp. triphenylmethane reductase.
    Kim MH; Kim Y; Park HJ; Lee JS; Kwak SN; Jung WH; Lee SG; Kim D; Lee YC; Oh TK
    J Biol Chem; 2008 Nov; 283(46):31981-90. PubMed ID: 18782772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.