These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 22624402)

  • 1. [Biodegradation mechanism of DDT and chlorpyrifos using molecular simulation].
    Lin YZ; Zeng GM; Zhang Y; Chen M; Jiang M; Zhang JC; Lu LH; Liu LF
    Huan Jing Ke Xue; 2012 Mar; 33(3):1015-9. PubMed ID: 22624402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Surface Display of Diisopropylfluorophosphatase (DFPase) in E. coli for Biodegradation of Toxic Organophosphorus Compounds (DFP and Cp).
    Latifi AM; Karami A; Khodi S
    Appl Biochem Biotechnol; 2015 Oct; 177(3):624-36. PubMed ID: 26239441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete biodegradation of chlorpyrifos by engineered Pseudomonas putida cells expressing surface-immobilized laccases.
    Liu J; Tan L; Wang J; Wang Z; Ni H; Li L
    Chemosphere; 2016 Aug; 157():200-7. PubMed ID: 27231878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental Distribution, Metabolic Fate, and Degradation Mechanism of Chlorpyrifos: Recent and Future Perspectives.
    Bhende RS; Jhariya U; Srivastava S; Bombaywala S; Das S; Dafale NA
    Appl Biochem Biotechnol; 2022 May; 194(5):2301-2335. PubMed ID: 35013924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of interaction modes involved in alkaline phosphatase and organophosphorus pesticides via molecular simulations.
    Chu YH; Li Y; Wang YT; Li B; Zhang YH
    Food Chem; 2018 Jul; 254():80-86. PubMed ID: 29548476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioremediation potential of laccase for catalysis of glyphosate, isoproturon, lignin, and parathion: Molecular docking, dynamics, and simulation.
    Bhatt P; Bhatt K; Chen WJ; Huang Y; Xiao Y; Wu S; Lei Q; Zhong J; Zhu X; Chen S
    J Hazard Mater; 2023 Feb; 443(Pt B):130319. PubMed ID: 36356521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of Cd on remediation of DDT contaminated soil using different laccase forms].
    Zhao YC; Fu R; Mo CH; Yi XY
    Huan Jing Ke Xue; 2008 Aug; 29(8):2331-5. PubMed ID: 18839595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular docking and dynamics simulation analyses unraveling the differential enzymatic catalysis by plant and fungal laccases with respect to lignin biosynthesis and degradation.
    Awasthi M; Jaiswal N; Singh S; Pandey VP; Dwivedi UN
    J Biomol Struct Dyn; 2015 Sep; 33(9):1835-49. PubMed ID: 25301391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous degradation of mixed insecticides by mixed fungal culture isolated from sewage sludge.
    Kulshrestha G; Kumari A
    J Agric Food Chem; 2010 Nov; 58(22):11852-6. PubMed ID: 20979383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The catalytic activity enhancement and biodegradation potential of free laccase and novel sol-gel laccase in non-conventional solvents.
    Mohidem NA; Mat HB
    Bioresour Technol; 2012 Jun; 114():472-7. PubMed ID: 22464060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chitosan functionalized Halloysite Nanotubes as a receptive surface for laccase and copper to perform degradation of chlorpyrifos in aqueous environment.
    Tharmavaram M; Pandey G; Bhatt P; Prajapati P; Rawtani D; Sooraj KP; Ranjan M
    Int J Biol Macromol; 2021 Nov; 191():1046-1055. PubMed ID: 34600951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bisphenol A degradation in water by ligninolytic enzymes.
    Gassara F; Brar SK; Verma M; Tyagi RD
    Chemosphere; 2013 Aug; 92(10):1356-60. PubMed ID: 23668961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An engineered microorganism can simultaneously detoxify cadmium, chlorpyrifos, and γ-hexachlorocyclohexane.
    Yang C; Yu H; Jiang H; Qiao C; Liu R
    J Basic Microbiol; 2016 Jul; 56(7):820-6. PubMed ID: 26648050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical and molecular basis of pesticide degradation by microorganisms.
    Singh BK; Kuhad RC; Singh A; Lal R; Tripathi KK
    Crit Rev Biotechnol; 1999; 19(3):197-225. PubMed ID: 10526405
    [No Abstract]   [Full Text] [Related]  

  • 15. Mitigation of organophosphorus insecticides from environment: Residual detoxification by bioweapon catalytic scavengers.
    Paidi MK; Satapute P; Haider MS; Udikeri SS; Ramachandra YL; Vo DN; Govarthanan M; Jogaiah S
    Environ Res; 2021 Sep; 200():111368. PubMed ID: 34081974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Enzymatic degradation of organophosphorus insecticide chlorpyrifos by fungus WZ-I].
    Xie H; Zhu LS; Wang J; Wang XG; Liu W; Qian B; Wang Q
    Huan Jing Ke Xue; 2005 Nov; 26(6):164-8. PubMed ID: 16447452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Tolerance and enzyme response of ectomycorrhizal fungi Xerocomus chrysenteron to DDT stress].
    Chao YQ; Huang Y; Fei YH; Yang Q
    Huan Jing Ke Xue; 2008 Mar; 29(3):788-94. PubMed ID: 18649545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of surfactants on the interaction of phenol with laccase: Molecular docking and molecular dynamics simulation studies.
    Liu Y; Liu Z; Zeng G; Chen M; Jiang Y; Shao B; Li Z; Liu Y
    J Hazard Mater; 2018 Sep; 357():10-18. PubMed ID: 29859460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of chlorpyrifos in soil using laccase immobilized iron oxide nanoparticles and their competent role in deterring the mobility of chlorpyrifos.
    Das A; Jaswal V; Yogalakshmi KN
    Chemosphere; 2020 May; 246():125676. PubMed ID: 31918078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial degradation of chlorpyrifos in liquid media and soil.
    Chishti Z; Hussain S; Arshad KR; Khalid A; Arshad M
    J Environ Manage; 2013 Jan; 114():372-80. PubMed ID: 23176983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.