BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 22624495)

  • 1. Three-dimensional tracking of carbon nanotubes within living cells.
    Reuel NF; Dupont A; Thouvenin O; Lamb DC; Strano MS
    ACS Nano; 2012 Jun; 6(6):5420-8. PubMed ID: 22624495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Where is it heading? Single-particle tracking of single-walled carbon nanotubes.
    Strano MS; Jin H
    ACS Nano; 2008 Sep; 2(9):1749-52. PubMed ID: 19206412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intercellular carbon nanotube translocation assessed by flow cytometry imaging.
    Marangon I; Boggetto N; Ménard-Moyon C; Venturelli E; Béoutis ML; Péchoux C; Luciani N; Wilhelm C; Bianco A; Gazeau F
    Nano Lett; 2012 Sep; 12(9):4830-7. PubMed ID: 22928721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insights of transmembranal mechanism and subcellular localization of noncovalently modified single-walled carbon nanotubes.
    Zhou F; Xing D; Wu B; Wu S; Ou Z; Chen WR
    Nano Lett; 2010 May; 10(5):1677-81. PubMed ID: 20369892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subcellular Partitioning and Analysis of Gd3+-Loaded Ultrashort Single-Walled Carbon Nanotubes.
    Holt BD; Law JJ; Boyer PD; Wilson LJ; Dahl KN; Islam MF
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14593-602. PubMed ID: 26098461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translational and rotational dynamics of individual single-walled carbon nanotubes in aqueous suspension.
    Tsyboulski DA; Bachilo SM; Kolomeisky AB; Weisman RB
    ACS Nano; 2008 Sep; 2(9):1770-6. PubMed ID: 19206415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cellular uptake and localization of non-emissive iridium(III) complexes as cellular reaction-based luminescence probes.
    Li C; Liu Y; Wu Y; Sun Y; Li F
    Biomaterials; 2013 Jan; 34(4):1223-34. PubMed ID: 23131533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Narrowing SWNT diameter distribution using size-separated ferritin-based Fe catalysts.
    Durrer L; Greenwald J; Helbling T; Muoth M; Riek R; Hierold C
    Nanotechnology; 2009 Sep; 20(35):355601. PubMed ID: 19671985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient absorption spectroscopy and imaging of individual chirality-assigned single-walled carbon nanotubes.
    Gao B; Hartland GV; Huang L
    ACS Nano; 2012 Jun; 6(6):5083-90. PubMed ID: 22577898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion of single-walled carbon nanotube under physiological conditions.
    Judkins J; Lee HH; Tung S; Kim JW
    J Biomed Nanotechnol; 2013 Jun; 9(6):1065-70. PubMed ID: 23858971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles.
    Jin H; Heller DA; Sharma R; Strano MS
    ACS Nano; 2009 Jan; 3(1):149-58. PubMed ID: 19206261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient assembly of multi-walled carbon nanotube-CdSe/ZnS quantum dot hybrids with high biocompatibility and fluorescence property.
    Zhang Y; Qin W; Tang H; Yan F; Tan L; Xie Q; Ma M; Zhang Y; Yao S
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):346-52. PubMed ID: 21680161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soluble ultra-short single-walled carbon nanotubes.
    Chen Z; Kobashi K; Rauwald U; Booker R; Fan H; Hwang WF; Tour JM
    J Am Chem Soc; 2006 Aug; 128(32):10568-71. PubMed ID: 16895425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AFM imaging of functionalized carbon nanotubes on biological membranes.
    Lamprecht C; Liashkovich I; Neves V; Danzberger J; Heister E; Rangl M; Coley HM; McFadden J; Flahaut E; Gruber HJ; Hinterdorfer P; Kienberger F; Ebner A
    Nanotechnology; 2009 Oct; 20(43):434001. PubMed ID: 19801758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells.
    Jin H; Heller DA; Strano MS
    Nano Lett; 2008 Jun; 8(6):1577-85. PubMed ID: 18491944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of chemically separated carbon nanotubes for nanoelectronics.
    Zhang L; Zaric S; Tu X; Wang X; Zhao W; Dai H
    J Am Chem Soc; 2008 Feb; 130(8):2686-91. PubMed ID: 18251484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-walled carbon nanotubes exhibit strong antimicrobial activity.
    Kang S; Pinault M; Pfefferle LD; Elimelech M
    Langmuir; 2007 Aug; 23(17):8670-3. PubMed ID: 17658863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transduction of glycan-lectin binding using near-infrared fluorescent single-walled carbon nanotubes for glycan profiling.
    Reuel NF; Ahn JH; Kim JH; Zhang J; Boghossian AA; Mahal LK; Strano MS
    J Am Chem Soc; 2011 Nov; 133(44):17923-33. PubMed ID: 21970594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqueous dispersion, surface thiolation, and direct self-assembly of carbon nanotubes on gold.
    Kocharova N; Aäritalo T; Leiro J; Kankare J; Lukkari J
    Langmuir; 2007 Mar; 23(6):3363-71. PubMed ID: 17291020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.