These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 22624681)

  • 1. Identification of systemic responses in soybean nodulation by xylem sap feeding and complete transcriptome sequencing reveal a novel component of the autoregulation pathway.
    Reid DE; Hayashi S; Lorenc M; Stiller J; Edwards D; Gresshoff PM; Ferguson BJ
    Plant Biotechnol J; 2012 Aug; 10(6):680-9. PubMed ID: 22624681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inoculation- and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation.
    Reid DE; Ferguson BJ; Gresshoff PM
    Mol Plant Microbe Interact; 2011 May; 24(5):606-18. PubMed ID: 21198362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The glycine max xylem sap and apoplast proteome.
    Djordjevic MA; Oakes M; Li DX; Hwang CH; Hocart CH; Gresshoff PM
    J Proteome Res; 2007 Sep; 6(9):3771-9. PubMed ID: 17696379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The soybean (Glycine max) nodulation-suppressive CLE peptide, GmRIC1, functions interspecifically in common white bean (Phaseolus vulgaris), but not in a supernodulating line mutated in the receptor PvNARK.
    Ferguson BJ; Li D; Hastwell AH; Reid DE; Li Y; Jackson SA; Gresshoff PM
    Plant Biotechnol J; 2014 Oct; 12(8):1085-97. PubMed ID: 25040127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient Nod factor-dependent gene expression in the nodulation-competent zone of soybean (Glycine max [L.] Merr.) roots.
    Hayashi S; Reid DE; Lorenc MT; Stiller J; Edwards D; Gresshoff PM; Ferguson BJ
    Plant Biotechnol J; 2012 Oct; 10(8):995-1010. PubMed ID: 22863334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of hypernodulation in soybean by a leaf-extracted, NARK- and Nod factor-dependent, low molecular mass fraction.
    Lin YH; Ferguson BJ; Kereszt A; Gresshoff PM
    New Phytol; 2010 Mar; 185(4):1074-86. PubMed ID: 20100211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of downstream signals of the soybean autoregulation of nodulation receptor kinase GmNARK.
    Kinkema M; Gresshoff PM
    Mol Plant Microbe Interact; 2008 Oct; 21(10):1337-48. PubMed ID: 18785829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effector-Triggered Immunity Determines Host Genotype-Specific Incompatibility in Legume-Rhizobium Symbiosis.
    Yasuda M; Miwa H; Masuda S; Takebayashi Y; Sakakibara H; Okazaki S
    Plant Cell Physiol; 2016 Aug; 57(8):1791-800. PubMed ID: 27373538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deletion of the SACPD-C Locus Alters the Symbiotic Relationship Between Bradyrhizobium japonicum USDA110 and Soybean, Resulting in Elicitation of Plant Defense Response and Nodulation Defects.
    Krishnan HB; Alaswad AA; Oehrle NW; Gillman JD
    Mol Plant Microbe Interact; 2016 Nov; 29(11):862-877. PubMed ID: 27749147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soybean ureases, but not that of Bradyrhizobium japonicum, are involved in the process of soybean root nodulation.
    Medeiros-Silva M; Franck WL; Borba MP; Pizzato SB; Strodtman KN; Emerich DW; Stacey G; Polacco JC; Carlini CR
    J Agric Food Chem; 2014 Apr; 62(16):3517-24. PubMed ID: 24716625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dual-targeted soybean protein is involved in Bradyrhizobium japonicum infection of soybean root hair and cortical cells.
    Libault M; Govindarajulu M; Berg RH; Ong YT; Puricelli K; Taylor CG; Xu D; Stacey G
    Mol Plant Microbe Interact; 2011 Sep; 24(9):1051-60. PubMed ID: 21815830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The autoregulation of nodulation mechanism is related to leaf development.
    Ito S; Kato T; Ohtake N; Sueyoshi K; Ohyama T
    Plant Cell Physiol; 2008 Jan; 49(1):121-5. PubMed ID: 18029379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soybean nodule-enhanced CLE peptides in roots act as signals in GmNARK-mediated nodulation suppression.
    Lim CW; Lee YW; Hwang CH
    Plant Cell Physiol; 2011 Sep; 52(9):1613-27. PubMed ID: 21757457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A thaumatin-like protein, Rj4, controls nodule symbiotic specificity in soybean.
    Hayashi M; Shiro S; Kanamori H; Mori-Hosokawa S; Sasaki-Yamagata H; Sayama T; Nishioka M; Takahashi M; Ishimoto M; Katayose Y; Kaga A; Harada K; Kouchi H; Saeki Y; Umehara Y
    Plant Cell Physiol; 2014 Sep; 55(9):1679-89. PubMed ID: 25059584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and functional characterization of soybean root hair microRNAs expressed in response to Bradyrhizobium japonicum infection.
    Yan Z; Hossain MS; Valdés-López O; Hoang NT; Zhai J; Wang J; Libault M; Brechenmacher L; Findley S; Joshi T; Qiu L; Sherrier DJ; Ji T; Meyers BC; Xu D; Stacey G
    Plant Biotechnol J; 2016 Jan; 14(1):332-41. PubMed ID: 25973713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential expression of two soybean apyrases, one of which is an early nodulin.
    Day RB; McAlvin CB; Loh JT; Denny RL; Wood TC; Young ND; Stacey G
    Mol Plant Microbe Interact; 2000 Oct; 13(10):1053-70. PubMed ID: 11043467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Immune Responses Induced by Simultaneous Inoculations of Soybean (Glycine max [L.] Merr.) with Soil Bacteria and Rhizobia.
    Hashami SZ; Nakamura H; Ohkama-Ohtsu N; Kojima K; Djedidi S; Fukuhara I; Haidari MD; Sekimoto H; Yokoyama T
    Microbes Environ; 2019 Mar; 34(1):64-75. PubMed ID: 30726789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-function analysis of the GmRIC1 signal peptide and CLE domain required for nodulation control in soybean.
    Reid DE; Li D; Ferguson BJ; Gresshoff PM
    J Exp Bot; 2013 Apr; 64(6):1575-85. PubMed ID: 23386683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of legume nodulation by Pi deficiency is dependent on the autoregulation of nodulation (AON) pathway.
    Isidra-Arellano MC; Pozas-Rodríguez EA; Del Rocío Reyero-Saavedra M; Arroyo-Canales J; Ferrer-Orgaz S; Del Socorro Sánchez-Correa M; Cardenas L; Covarrubias AA; Valdés-López O
    Plant J; 2020 Aug; 103(3):1125-1139. PubMed ID: 32344464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-inoculation of rhizobacteria promotes growth, yield, and nutrient contents in soybean and improves soil enzymes and nutrients under drought conditions.
    Jabborova D; Kannepalli A; Davranov K; Narimanov A; Enakiev Y; Syed A; Elgorban AM; Bahkali AH; Wirth S; Sayyed RZ; Gafur A
    Sci Rep; 2021 Nov; 11(1):22081. PubMed ID: 34764331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.