BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 22626056)

  • 21. Hemodynamic response to exercise and head-up tilt of patients implanted with a rotary blood pump: a computational modeling study.
    Lim E; Salamonsen RF; Mansouri M; Gaddum N; Mason DG; Timms DL; Stevens MC; Fraser J; Akmeliawati R; Lovell NH
    Artif Organs; 2015 Feb; 39(2):E24-35. PubMed ID: 25345482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A physiological controller for turbodynamic ventricular assist devices based on a measurement of the left ventricular volume.
    Ochsner G; Amacher R; Wilhelm MJ; Vandenberghe S; Tevaearai H; Plass A; Amstutz A; Falk V; Schmid Daners M
    Artif Organs; 2014 Jul; 38(7):527-38. PubMed ID: 24256168
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Vitro Evaluation of an Immediate Response Starling-Like Controller for Dual Rotary Blood Pumps.
    Stephens AF; Stevens MC; Gregory SD; Kleinheyer M; Salamonsen RF
    Artif Organs; 2017 Oct; 41(10):911-922. PubMed ID: 28741664
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Starling-like total work controller for rotary blood pumps: An in vitro evaluation.
    Wu EL; Stevens MC; Nestler F; Pauls JP; Bradley AP; Tansley G; Fraser JF; Gregory SD
    Artif Organs; 2020 Mar; 44(3):E40-E53. PubMed ID: 31520408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The impact of pump speed and inlet cannulation site on left ventricular unloading with a rotary blood pump.
    Vandenberghe S; Nishida T; Segers P; Meyns B; Verdonck P
    Artif Organs; 2004 Jul; 28(7):660-7. PubMed ID: 15209860
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increasing the transmitted flow pulse in a rotary left ventricular assist device.
    Gaddum NR; Fraser JF; Timms DL
    Artif Organs; 2012 Oct; 36(10):859-67. PubMed ID: 22845793
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of the external work of the native heart from the dynamic H-Q curves of the rotary blood pumps during left heart bypass.
    Yokoyama Y; Kawaguchi O; Kitao T; Kimura T; Steinseifer U; Takatani S
    Artif Organs; 2010 Sep; 34(9):766-77. PubMed ID: 20883395
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In Vivo Evaluation of Active and Passive Physiological Control Systems for Rotary Left and Right Ventricular Assist Devices.
    Gregory SD; Stevens MC; Pauls JP; Schummy E; Diab S; Thomson B; Anderson B; Tansley G; Salamonsen R; Fraser JF; Timms D
    Artif Organs; 2016 Sep; 40(9):894-903. PubMed ID: 26748566
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A control system for rotary blood pumps based on suction detection.
    Ferreira A; Boston JR; Antaki JF
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):656-65. PubMed ID: 19272919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Asymmetric speed modulation of a rotary blood pump affects ventricular unloading.
    Pirbodaghi T; Weber A; Axiak S; Carrel T; Vandenberghe S
    Eur J Cardiothorac Surg; 2013 Feb; 43(2):383-8. PubMed ID: 22689185
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Power consumption of rotary blood pumps: pulsatile versus constant-speed mode.
    Pirbodaghi T; Cotter C; Bourque K
    Artif Organs; 2014 Dec; 38(12):1024-8. PubMed ID: 24842216
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of aortic valve opening during rotary blood pump support using pump signals.
    Granegger M; Schima H; Zimpfer D; Moscato F
    Artif Organs; 2014 Apr; 38(4):290-7. PubMed ID: 24102321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a pump flow estimator for rotary blood pumps to enhance monitoring of ventricular function.
    Granegger M; Moscato F; Casas F; Wieselthaler G; Schima H
    Artif Organs; 2012 Aug; 36(8):691-9. PubMed ID: 22882439
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Physiological Controller for Turbodynamic Ventricular Assist Devices Based on Left Ventricular Systolic Pressure.
    Petrou A; Ochsner G; Amacher R; Pergantis P; Rebholz M; Meboldt M; Schmid Daners M
    Artif Organs; 2016 Sep; 40(9):842-55. PubMed ID: 27645395
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physiological control of blood pumps using intrinsic pump parameters: a computer simulation study.
    Giridharan GA; Skliar M
    Artif Organs; 2006 Apr; 30(4):301-7. PubMed ID: 16643388
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Weaning of rotary blood pump recipients after myocardial recovery: a computer study of changes in cardiac energetics.
    Schima H; Vollkron M; Boehm H; Röthy W; Haisjackl M; Wieselthaler G; Wolner E
    J Thorac Cardiovasc Surg; 2004 Jun; 127(6):1743-50. PubMed ID: 15173732
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of Adaptive Starling-Like Controller to Total Artificial Heart Using Dual Rotary Blood Pumps.
    Ng BC; Smith PA; Nestler F; Timms D; Cohn WE; Lim E
    Ann Biomed Eng; 2017 Mar; 45(3):567-579. PubMed ID: 27543069
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a reliable automatic speed control system for rotary blood pumps.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    J Heart Lung Transplant; 2005 Nov; 24(11):1878-85. PubMed ID: 16297795
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Derivation of indices of left ventricular contractility in the setting of continuous-flow left ventricular assist device support.
    Gupta S; Muthiah K; Woldendorp K; Robson D; Jansz P; Hayward CS
    Artif Organs; 2014 Dec; 38(12):1029-34. PubMed ID: 24660889
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A model-free adaptive control to a blood pump based on heart rate.
    Chang Y; Gao B; Gu K
    ASAIO J; 2011; 57(4):262-7. PubMed ID: 21502862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.