BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 22626463)

  • 1. Oxidative deterioration of platinum nanoparticle and its prevention by palladium.
    Okamoto H; Horii K; Fujisawa A; Yamamoto Y
    Exp Dermatol; 2012 Jul; 21 Suppl 1():5-7. PubMed ID: 22626463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide.
    Kajita M; Hikosaka K; Iitsuka M; Kanayama A; Toshima N; Miyamoto Y
    Free Radic Res; 2007 Jun; 41(6):615-26. PubMed ID: 17516233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct evidence for catalase and peroxidase activities of ferritin-platinum nanoparticles.
    Fan J; Yin JJ; Ning B; Wu X; Hu Y; Ferrari M; Anderson GJ; Wei J; Zhao Y; Nie G
    Biomaterials; 2011 Feb; 32(6):1611-8. PubMed ID: 21112084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen.
    Liu Y; Wu H; Li M; Yin JJ; Nie Z
    Nanoscale; 2014 Oct; 6(20):11904-10. PubMed ID: 25175625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction.
    Lim B; Jiang M; Camargo PH; Cho EC; Tao J; Lu X; Zhu Y; Xia Y
    Science; 2009 Jun; 324(5932):1302-5. PubMed ID: 19443738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme-mimetic effects of gold@platinum nanorods on the antioxidant activity of ascorbic acid.
    Zhou YT; He W; Wamer WG; Hu X; Wu X; Lo YM; Yin JJ
    Nanoscale; 2013 Feb; 5(4):1583-91. PubMed ID: 23329011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of OH radicals in oxygen reduction reaction at Pt-Co nanoparticles supported on graphene in alkaline solutions.
    Yue Q; Zhang K; Chen X; Wang L; Zhao J; Liu J; Jia J
    Chem Commun (Camb); 2010 May; 46(19):3369-71. PubMed ID: 20442904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrocatalytic activity of salicylic acid on the platinum nanoparticles modified electrode by electrochemical deposition.
    Wang Z; Ai F; Xu Q; Yang Q; Yu JH; Huang WH; Zhao YD
    Colloids Surf B Biointerfaces; 2010 Mar; 76(1):370-4. PubMed ID: 19939641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanosized Pt-Co catalysts for the preferential CO oxidation.
    Ko EY; Park ED; Seo KW; Lee HC; Lee D; Kim S
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3567-71. PubMed ID: 17252813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Luminol chemiluminescence catalysed by colloidal platinum nanoparticles.
    Xu SL; Cui H
    Luminescence; 2007; 22(2):77-87. PubMed ID: 17089353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction.
    Pang SY; Jiang J; Ma J
    Environ Sci Technol; 2011 Jan; 45(1):307-12. PubMed ID: 21133375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulating the oxygen reduction activity of platinum shells with shape-controlled palladium nanocrystal cores.
    Shao M; He G; Peles A; Odell JH; Zeng J; Su D; Tao J; Yu T; Zhu Y; Xia Y
    Chem Commun (Camb); 2013 Oct; 49(79):9030-2. PubMed ID: 23982335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticle-supported and magnetically recoverable palladium (Pd) catalyst: a selective and sustainable oxidation protocol with high turnover number.
    Polshettiwar V; Varma RS
    Org Biomol Chem; 2009 Jan; 7(1):37-40. PubMed ID: 19081941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective oxidation of glycerol by using a hydrotalcite-supported platinum catalyst under atmospheric oxygen pressure in water.
    Tsuji A; Rao KT; Nishimura S; Takagaki A; Ebitani K
    ChemSusChem; 2011 Apr; 4(4):542-8. PubMed ID: 21271683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Platinum Nanoparticles: Efficient and Stable Catechol Oxidase Mimetics.
    Liu Y; Wu H; Chong Y; Wamer WG; Xia Q; Cai L; Nie Z; Fu PP; Yin JJ
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19709-17. PubMed ID: 26305170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation 9 polyamidoamine dendrimer encapsulated platinum nanoparticle mimics catalase size, shape, and catalytic activity.
    Wang X; Zhang Y; Li T; Tian W; Zhang Q; Cheng Y
    Langmuir; 2013 Apr; 29(17):5262-70. PubMed ID: 23544351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanocrystals composed of alternating shells of Pd and Pt can be obtained by sequentially adding different precursors.
    Zhang H; Jin M; Wang J; Kim MJ; Yang D; Xia Y
    J Am Chem Soc; 2011 Jul; 133(27):10422-5. PubMed ID: 21675792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High performance of hydrogen peroxide detection using Pt nanoparticles-dispersed carbon electrode prepared by pulsed arc plasma deposition.
    Ito T; Kunimatsu M; Kaneko S; Hirabayashi Y; Soga M; Agawa Y; Suzuki K
    Talanta; 2012 Sep; 99():865-70. PubMed ID: 22967635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring of Pd-Pt bimetallic clusters with high stability for oxygen reduction reaction.
    Cheng D; Wang W
    Nanoscale; 2012 Apr; 4(7):2408-15. PubMed ID: 22374435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled synthesis of Pd-Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction.
    Hong JW; Kang SW; Choi BS; Kim D; Lee SB; Han SW
    ACS Nano; 2012 Mar; 6(3):2410-9. PubMed ID: 22360814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.