BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 22626463)

  • 21. Tunable properties of PtxFe1-x electrocatalysts and their catalytic activity towards the oxygen reduction reaction.
    Lai FJ; Chou HL; Sarma LS; Wang DY; Lin YC; Lee JF; Hwang BJ; Chen CC
    Nanoscale; 2010 Apr; 2(4):573-81. PubMed ID: 20644761
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids.
    Zhang H; Cui H
    Langmuir; 2009 Mar; 25(5):2604-12. PubMed ID: 19437685
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydroxyl radical scavenging assay of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method using catalase for hydrogen peroxide degradation.
    Ozyürek M; Bektaşoğlu B; Güçlü K; Apak R
    Anal Chim Acta; 2008 Jun; 616(2):196-206. PubMed ID: 18482604
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide.
    Guinea E; Arias C; Cabot PL; Garrido JA; Rodríguez RM; Centellas F; Brillas E
    Water Res; 2008 Jan; 42(1-2):499-511. PubMed ID: 17692891
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrogen absorption in the core/shell interface of Pd/Pt nanoparticles.
    Kobayashi H; Yamauchi M; Kitagawa H; Kubota Y; Kato K; Takata M
    J Am Chem Soc; 2008 Feb; 130(6):1818-9. PubMed ID: 18193876
    [No Abstract]   [Full Text] [Related]  

  • 26. Correlation between platinum nanoparticle surface rearrangement induced by heat treatment and activity for an oxygen reduction reaction.
    Chung DY; Chung YH; Jung N; Choi KH; Sung YE
    Phys Chem Chem Phys; 2013 Aug; 15(32):13658-63. PubMed ID: 23835855
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relating structural aspects of bimetallic Pt(3)Cr(1)/C nanoparticles to their electrocatalytic activity, stability, and selectivity in the oxygen reduction reaction.
    Taufany F; Pan CJ; Chou HL; Rick J; Chen YS; Liu DG; Lee JF; Tang MT; Hwang BJ
    Chemistry; 2011 Sep; 17(38):10724-35. PubMed ID: 21837730
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrocatalytic activity of nanoporous Pd and Pt: effect of structural features.
    Shim JH; Kim YS; Kang M; Lee C; Lee Y
    Phys Chem Chem Phys; 2012 Mar; 14(11):3974-9. PubMed ID: 22322646
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles.
    He W; Zhou YT; Wamer WG; Boudreau MD; Yin JJ
    Biomaterials; 2012 Oct; 33(30):7547-55. PubMed ID: 22809647
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coordination and reduction processes in the synthesis of dendrimer-encapsulated Pt nanoparticles.
    Yamamoto D; Watanabe S; Miyahara MT
    Langmuir; 2010 Feb; 26(4):2339-45. PubMed ID: 20141201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pt@MOF-177: synthesis, room-temperature hydrogen storage and oxidation catalysis.
    Proch S; Herrmannsdörfer J; Kempe R; Kern C; Jess A; Seyfarth L; Senker J
    Chemistry; 2008; 14(27):8204-12. PubMed ID: 18666269
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of TAT conjugated platinum nanoparticles on lifespan in a nematode Caenorhabditis elegans model.
    Kim J; Shirasawa T; Miyamoto Y
    Biomaterials; 2010 Aug; 31(22):5849-54. PubMed ID: 20434216
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of platinum and palladium ions on the production and reactivity of neutrophil-derived reactive oxygen species.
    Theron AJ; Ramafi GJ; Feldman C; Grimmer H; Visser SS; Anderson R
    Free Radic Biol Med; 2004 Jun; 36(11):1408-17. PubMed ID: 15135177
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Syntheses and electronic structures of one-electron-oxidized group 10 metal(II)-(disalicylidene)diamine complexes (metal = Ni, Pd, Pt).
    Shimazaki Y; Yajima T; Tani F; Karasawa S; Fukui K; Naruta Y; Yamauchi O
    J Am Chem Soc; 2007 Mar; 129(9):2559-68. PubMed ID: 17290991
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Facile Synthesis of Monodisperse Pt and Pd Nanoparticles Using Antioxidants.
    Ko YL; Krishnamurthy S; Yun YS
    J Nanosci Nanotechnol; 2015 Jan; 15(1):412-7. PubMed ID: 26328372
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facile synthesis of Pd-Pt alloy nanocages and their enhanced performance for preferential oxidation of CO in excess hydrogen.
    Zhang H; Jin M; Liu H; Wang J; Kim MJ; Yang D; Xie Z; Liu J; Xia Y
    ACS Nano; 2011 Oct; 5(10):8212-22. PubMed ID: 21888409
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrodeposited noble metal particles in polyelectrolyte multilayer matrix as electrocatalyst for oxygen reduction studied using SECM.
    Shen Y; Träuble M; Wittstock G
    Phys Chem Chem Phys; 2008 Jul; 10(25):3635-44. PubMed ID: 18563224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of Pt/polypyrrole hybrid hollow microspheres and their application in electrochemical biosensing towards hydrogen peroxide.
    Bian X; Lu X; Jin E; Kong L; Zhang W; Wang C
    Talanta; 2010 May; 81(3):813-8. PubMed ID: 20298858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ and real-time monitoring of oxide growth in a few monolayers at surfaces of platinum nanoparticles in aqueous media.
    Imai H; Izumi K; Matsumoto M; Kubo Y; Kato K; Imai Y
    J Am Chem Soc; 2009 May; 131(17):6293-300. PubMed ID: 19358577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrothermal synthesis of platinum-group-metal nanoparticles by using HEPES as a reductant and stabilizer.
    So MH; Ho CM; Chen R; Che CM
    Chem Asian J; 2010 Jun; 5(6):1322-31. PubMed ID: 20512785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.