These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. UXT, a novel MDMX-binding protein, promotes glycolysis by mitigating p53-mediated restriction of NF-κB activity. Qi M; Ganapathy S; Zeng W; Zhang J; Little JB; Yuan ZM Oncotarget; 2015 Jul; 6(19):17584-93. PubMed ID: 25974965 [TBL] [Abstract][Full Text] [Related]
6. P53 vs NF-κB: the role of nuclear factor-kappa B in the regulation of p53 activity and vice versa. Carrà G; Lingua MF; Maffeo B; Taulli R; Morotti A Cell Mol Life Sci; 2020 Nov; 77(22):4449-4458. PubMed ID: 32322927 [TBL] [Abstract][Full Text] [Related]
9. p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Kawauchi K; Araki K; Tobiume K; Tanaka N Nat Cell Biol; 2008 May; 10(5):611-8. PubMed ID: 18391940 [TBL] [Abstract][Full Text] [Related]
10. Notch Signaling Enhances Stemness by Regulating Metabolic Pathways Through Modifying p53, NF-κB, and HIF-1α. Moriyama H; Moriyama M; Ozawa T; Tsuruta D; Iguchi T; Tamada S; Nakatani T; Nakagawa K; Hayakawa T Stem Cells Dev; 2018 Jul; 27(13):935-947. PubMed ID: 29717634 [TBL] [Abstract][Full Text] [Related]
11. Gene Expression Profile of NF-κB, Nrf2, Glycolytic, and p53 Pathways During the SH-SY5Y Neuronal Differentiation Mediated by Retinoic Acid. de Bittencourt Pasquali MA; de Ramos VM; Albanus RDO; Kunzler A; de Souza LHT; Dalmolin RJS; Gelain DP; Ribeiro L; Carro L; Moreira JCF Mol Neurobiol; 2016 Jan; 53(1):423-435. PubMed ID: 25465239 [TBL] [Abstract][Full Text] [Related]
12. Glycolysis links p53 function with NF-kappaB signaling: impact on cancer and aging process. Salminen A; Kaarniranta K J Cell Physiol; 2010 Jul; 224(1):1-6. PubMed ID: 20301205 [TBL] [Abstract][Full Text] [Related]
13. p53- and Mdm2-independent repression of NF-kappa B transactivation by the ARF tumor suppressor. Rocha S; Campbell KJ; Perkins ND Mol Cell; 2003 Jul; 12(1):15-25. PubMed ID: 12887889 [TBL] [Abstract][Full Text] [Related]
14. p53-dependent regulation of mitochondrial energy production by the RelA subunit of NF-κB. Johnson RF; Witzel II; Perkins ND Cancer Res; 2011 Aug; 71(16):5588-97. PubMed ID: 21742773 [TBL] [Abstract][Full Text] [Related]
15. Leukocyte elastase induces lung epithelial apoptosis via a PAR-1-, NF-kappaB-, and p53-dependent pathway. Suzuki T; Yamashita C; Zemans RL; Briones N; Van Linden A; Downey GP Am J Respir Cell Mol Biol; 2009 Dec; 41(6):742-55. PubMed ID: 19307610 [TBL] [Abstract][Full Text] [Related]
16. Benzo[a]pyrene activates the human p53 gene through induction of nuclear factor kappaB activity. Pei XH; Nakanishi Y; Takayama K; Bai F; Hara N J Biol Chem; 1999 Dec; 274(49):35240-6. PubMed ID: 10575010 [TBL] [Abstract][Full Text] [Related]
17. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Lu J; Tan M; Cai Q Cancer Lett; 2015 Jan; 356(2 Pt A):156-64. PubMed ID: 24732809 [TBL] [Abstract][Full Text] [Related]
18. Overexpression of Ref-1 inhibits hypoxia and tumor necrosis factor-induced endothelial cell apoptosis through nuclear factor-kappab-independent and -dependent pathways. Hall JL; Wang X; Van Adamson ; Zhao Y; Gibbons GH Circ Res; 2001 Jun; 88(12):1247-53. PubMed ID: 11420300 [TBL] [Abstract][Full Text] [Related]
19. Proenkephalin assists stress-activated apoptosis through transcriptional repression of NF-kappaB- and p53-regulated gene targets. McTavish N; Copeland LA; Saville MK; Perkins ND; Spruce BA Cell Death Differ; 2007 Sep; 14(9):1700-10. PubMed ID: 17599100 [TBL] [Abstract][Full Text] [Related]
20. EGFR-induced and PKCε monoubiquitylation-dependent NF-κB activation upregulates PKM2 expression and promotes tumorigenesis. Yang W; Xia Y; Cao Y; Zheng Y; Bu W; Zhang L; You MJ; Koh MY; Cote G; Aldape K; Li Y; Verma IM; Chiao PJ; Lu Z Mol Cell; 2012 Dec; 48(5):771-84. PubMed ID: 23123196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]