BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 22626747)

  • 1. Anti-inflammatory homoisoflavonoids from the tuberous roots of Ophiopogon japonicus.
    Li N; Zhang JY; Zeng KW; Zhang L; Che YY; Tu PF
    Fitoterapia; 2012 Sep; 83(6):1042-5. PubMed ID: 22626747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homoisoflavonoid derivatives from the roots of Ophiopogon japonicus and their in vitro anti-inflammation activity.
    Hung TM; Thu CV; Dat NT; Ryoo SW; Lee JH; Kim JC; Na M; Jung HJ; Bae K; Min BS
    Bioorg Med Chem Lett; 2010 Apr; 20(8):2412-6. PubMed ID: 20346658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenylethanoid glycosides with anti-inflammatory activities from the stems of Cistanche deserticola cultured in Tarim desert.
    Nan ZD; Zeng KW; Shi SP; Zhao MB; Jiang Y; Tu PF
    Fitoterapia; 2013 Sep; 89():167-74. PubMed ID: 23685247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-neuroinflammatory constituents from Polygala tricornis Gagnep.
    Li J; Zeng KW; Shi SP; Jiang Y; Tu PF
    Fitoterapia; 2012 Jul; 83(5):896-900. PubMed ID: 22498345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytotoxic Homoisoflavonoids from Ophiopogon japonicus Tubers.
    Dang NH; Chung ND; Tuan HM; Hiep NT; Dat NT
    Chem Pharm Bull (Tokyo); 2017 Feb; 65(2):204-207. PubMed ID: 27916782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Five new homoisoflavonoids from the tuber of Ophiopogon japonicus.
    Chang JM; Shen CC; Huang YL; Chien MY; Ou JC; Shieh BJ; Chen CC
    J Nat Prod; 2002 Nov; 65(11):1731-3. PubMed ID: 12444717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two new homoisoflavonoids from the fibrous roots of Ophiopogon japonicus (Thunb.) Ker-Gawl.
    Duan CL; Kang ZY; Lin CR; Jiang Y; Liu JX; Tu PF
    J Asian Nat Prod Res; 2009 Oct; 11(10):876-9. PubMed ID: 20183249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytotoxic steroidal saponins from Ophiopogon japonicus.
    Li N; Zhang L; Zeng KW; Zhou Y; Zhang JY; Che YY; Tu PF
    Steroids; 2013 Jan; 78(1):1-7. PubMed ID: 23123739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New steroids and sesquiterpene from Turraea pubescens.
    Yuan CM; Tang GH; Wang XY; Zhang Y; Cao MM; Li XH; Li Y; Li SL; Di YT; He HP; Hao XJ; Hua HM
    Fitoterapia; 2013 Oct; 90():119-25. PubMed ID: 23856090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sesquiterpenoids from Inula racemosa Hook. f. inhibit nitric oxide production.
    Zhang SD; Qin JJ; Jin HZ; Yin YH; Li HL; Yang XW; Li X; Shan L; Zhang WD
    Planta Med; 2012 Jan; 78(2):166-71. PubMed ID: 22002850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical constituents of Alnus firma and their inhibitory activity on lipopolysaccharide-induced nitric oxide production in BV2 microglia.
    Lee MA; Lee HK; Kim SH; Kim YC; Sung SH
    Planta Med; 2010 Jul; 76(10):1007-10. PubMed ID: 20195963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory constituents of Euonymus alatus leaves and twigs on nitric oxide production in BV2 microglia cells.
    Jeong EJ; Yang H; Kim SH; Kang SY; Sung SH; Kim YC
    Food Chem Toxicol; 2011 Jun; 49(6):1394-8. PubMed ID: 21426922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactive sesquiterpenes from the essential oil of Thuja orientalis.
    Kim KH; Moon E; Kim SY; Choi SU; Son MW; Choi SZ; Lee KR
    Planta Med; 2013 Nov; 79(17):1680-4. PubMed ID: 24135886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homoisoflavonoids from Ophiopogon japonicus Ker-Gawler.
    Hoang Anh NT; Van Sung T; Porzel A; Franke K; Wessjohann LA
    Phytochemistry; 2003 Apr; 62(7):1153-8. PubMed ID: 12591271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New ursane-type triterpenoid saponins from the stem bark of Schefflera heptaphylla.
    Wu C; Duan YH; Tang W; Li MM; Wu X; Wang GC; Ye WC; Zhou GX; Li YL
    Fitoterapia; 2014 Jan; 92():127-32. PubMed ID: 24144797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neolignans from the fruits of Magnolia obovata and their inhibition effect on NO production in LPS-induced RAW 264.7 cells.
    Seo KH; Lee DY; Lee DS; Park JH; Jeong RH; Jung YJ; Shrestha S; Chung IS; Kim GS; Kim YC; Baek NI
    Planta Med; 2013 Sep; 79(14):1335-40. PubMed ID: 23970426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitory effects of kaurenoic acid from Aralia continentalis on LPS-induced inflammatory response in RAW264.7 macrophages.
    Choi RJ; Shin EM; Jung HA; Choi JS; Kim YS
    Phytomedicine; 2011 Jun; 18(8-9):677-82. PubMed ID: 21211951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of anti-inflammatory activity of compounds isolated from the rhizome of Ophiopogon japonicas.
    Zhao JW; Chen DS; Deng CS; Wang Q; Zhu W; Lin L
    BMC Complement Altern Med; 2017 Jan; 17(1):7. PubMed ID: 28056939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sesquiterpenes from Vladimiria souliei and their inhibitory effects on NO production.
    Xu J; Jin D; Shi D; Ma Y; Yang B; Zhao P; Guo Y
    Fitoterapia; 2011 Apr; 82(3):508-11. PubMed ID: 21238550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quinic acid derivatives from Pimpinella brachycarpa exert anti-neuroinflammatory activity in lipopolysaccharide-induced microglia.
    Lee SY; Moon E; Kim SY; Lee KR
    Bioorg Med Chem Lett; 2013 Apr; 23(7):2140-4. PubMed ID: 23462643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.