These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 22627008)

  • 1. Decoding continuous three-dimensional hand trajectories from epidural electrocorticographic signals in Japanese macaques.
    Shimoda K; Nagasaka Y; Chao ZC; Fujii N
    J Neural Eng; 2012 Jun; 9(3):036015. PubMed ID: 22627008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Error-related electrocorticographic activity in humans during continuous movements.
    Milekovic T; Ball T; Schulze-Bonhage A; Aertsen A; Mehring C
    J Neural Eng; 2012 Apr; 9(2):026007. PubMed ID: 22326993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time control of a prosthetic hand using human electrocorticography signals.
    Yanagisawa T; Hirata M; Saitoh Y; Goto T; Kishima H; Fukuma R; Yokoi H; Kamitani Y; Yoshimine T
    J Neurosurg; 2011 Jun; 114(6):1715-22. PubMed ID: 21314273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurophysiological predictor of SMR-based BCI performance.
    Blankertz B; Sannelli C; Halder S; Hammer EM; Kübler A; Müller KR; Curio G; Dickhaus T
    Neuroimage; 2010 Jul; 51(4):1303-9. PubMed ID: 20303409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous decoding of human grasp kinematics using epidural and subdural signals.
    Flint RD; Rosenow JM; Tate MC; Slutzky MW
    J Neural Eng; 2017 Feb; 14(1):016005. PubMed ID: 27900947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding two-dimensional movement trajectories using electrocorticographic signals in humans.
    Schalk G; Kubánek J; Miller KJ; Anderson NR; Leuthardt EC; Ojemann JG; Limbrick D; Moran D; Gerhardt LA; Wolpaw JR
    J Neural Eng; 2007 Sep; 4(3):264-75. PubMed ID: 17873429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding natural grasp types from human ECoG.
    Pistohl T; Schulze-Bonhage A; Aertsen A; Mehring C; Ball T
    Neuroimage; 2012 Jan; 59(1):248-60. PubMed ID: 21763434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robustness of neuroprosthetic decoding algorithms.
    Serruya M; Hatsopoulos N; Fellows M; Paninski L; Donoghue J
    Biol Cybern; 2003 Mar; 88(3):219-28. PubMed ID: 12647229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects.
    Blankertz B; Dornhege G; Krauledat M; Müller KR; Curio G
    Neuroimage; 2007 Aug; 37(2):539-50. PubMed ID: 17475513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A thin film polyimide mesh microelectrode for chronic epidural electrocorticography recording with enhanced contactability.
    Baek DH; Lee J; Byeon HJ; Choi H; Young Kim I; Lee KM; Jungho Pak J; Pyo Jang D; Lee SH
    J Neural Eng; 2014 Aug; 11(4):046023. PubMed ID: 25024292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved multi-unit decoding at the brain-machine interface using population temporal linear filtering.
    Herzfeld DJ; Beardsley SA
    J Neural Eng; 2010 Aug; 7(4):046012. PubMed ID: 20644245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A piecewise probabilistic regression model to decode hand movement trajectories from epidural and subdural ECoG signals.
    Farrokhi B; Erfanian A
    J Neural Eng; 2018 Jun; 15(3):036020. PubMed ID: 29485407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An online brain-machine interface using decoding of movement direction from the human electrocorticogram.
    Milekovic T; Fischer J; Pistohl T; Ruescher J; Schulze-Bonhage A; Aertsen A; Rickert J; Ball T; Mehring C
    J Neural Eng; 2012 Aug; 9(4):046003. PubMed ID: 22713666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast attainment of computer cursor control with noninvasively acquired brain signals.
    Bradberry TJ; Gentili RJ; Contreras-Vidal JL
    J Neural Eng; 2011 Jun; 8(3):036010. PubMed ID: 21493978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control.
    Huang D; Lin P; Fei DY; Chen X; Bai O
    J Neural Eng; 2009 Aug; 6(4):046005. PubMed ID: 19556679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of arm movement trajectories from ECoG-recordings in humans.
    Pistohl T; Ball T; Schulze-Bonhage A; Aertsen A; Mehring C
    J Neurosci Methods; 2008 Jan; 167(1):105-14. PubMed ID: 18022247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding continuous limb movements from high-density epidural electrode arrays using custom spatial filters.
    Marathe AR; Taylor DM
    J Neural Eng; 2013 Jun; 10(3):036015. PubMed ID: 23611833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [An outlook on the present and future of brain-machine interface research].
    Majima K; Kamitani Y
    Brain Nerve; 2011 Mar; 63(3):241-6. PubMed ID: 21386125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hand posture classification using electrocorticography signals in the gamma band over human sensorimotor brain areas.
    Chestek CA; Gilja V; Blabe CH; Foster BL; Shenoy KV; Parvizi J; Henderson JM
    J Neural Eng; 2013 Apr; 10(2):026002. PubMed ID: 23369953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic trajectory decoding using motor cortical ensembles.
    Fagg AH; Ojakangas GW; Miller LE; Hatsopoulos NG
    IEEE Trans Neural Syst Rehabil Eng; 2009 Oct; 17(5):487-96. PubMed ID: 19666343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.