BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 22627059)

  • 21. Mitogenomic analyses provide new insights into cetacean origin and evolution.
    Arnason U; Gullberg A; Janke A
    Gene; 2004 May; 333():27-34. PubMed ID: 15177677
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative chromosome painting between the domestic pig (Sus scrofa) and two species of peccary, the collared peccary (Tayassu tajacu) and the white-lipped peccary (T. pecari): a phylogenetic perspective.
    Bosma AA; de Haan NA; Arkesteijn GJ; Yang F; Yerle M; Zijlstra C
    Cytogenet Genome Res; 2004; 105(1):115-21. PubMed ID: 15218266
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hippopotamus and whale phylogeny.
    Geisler JH; Theodor JM
    Nature; 2009 Mar; 458(7236):E1-4; discussion E5. PubMed ID: 19295550
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence from milk casein genes that cetaceans are close relatives of hippopotamid artiodactyls.
    Gatesy J; Hayashi C; Cronin MA; Arctander P
    Mol Biol Evol; 1996 Sep; 13(7):954-63. PubMed ID: 8752004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Instability of quartet analyses of molecular sequence data by the maximum likelihood method: the Cetacea/Artiodactyla relationships.
    Adachi J; Hasegawa M
    Mol Phylogenet Evol; 1996 Aug; 6(1):72-6. PubMed ID: 8812307
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The phylogeny of Cetartiodactyla: the importance of dense taxon sampling, missing data, and the remarkable promise of cytochrome b to provide reliable species-level phylogenies.
    Agnarsson I; May-Collado LJ
    Mol Phylogenet Evol; 2008 Sep; 48(3):964-85. PubMed ID: 18590827
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization and phylogenetic utility of the mammalian protamine p1 gene.
    Van Den Bussche RA; Hoofer SR; Hansen EW
    Mol Phylogenet Evol; 2002 Mar; 22(3):333-41. PubMed ID: 11884158
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phylogenetic relationships among cetartiodactyls based on insertions of short and long interpersed elements: hippopotamuses are the closest extant relatives of whales.
    Nikaido M; Rooney AP; Okada N
    Proc Natl Acad Sci U S A; 1999 Aug; 96(18):10261-6. PubMed ID: 10468596
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Skeletons of terrestrial cetaceans and the relationship of whales to artiodactyls.
    Thewissen JG; Williams EM; Roe LJ; Hussain ST
    Nature; 2001 Sep; 413(6853):277-81. PubMed ID: 11565023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A phylogenetic blueprint for a modern whale.
    Gatesy J; Geisler JH; Chang J; Buell C; Berta A; Meredith RW; Springer MS; McGowen MR
    Mol Phylogenet Evol; 2013 Feb; 66(2):479-506. PubMed ID: 23103570
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Support for interordinal eutherian relationships with an emphasis on primates and their archontan relatives.
    Allard MW; McNiff BE; Miyamoto MM
    Mol Phylogenet Evol; 1996 Feb; 5(1):78-88. PubMed ID: 8673299
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A highly polymorphic insertion in the Y-chromosome amelogenin gene can be used for evolutionary biology, population genetics and sexing in Cetacea and Artiodactyla.
    Macé M; Crouau-Roy B
    BMC Genet; 2008 Oct; 9():64. PubMed ID: 18925953
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Signature of positive selection in mitochondrial DNA in Cetartiodactyla.
    Mori S; Matsunami M
    Genes Genet Syst; 2018 Sep; 93(2):65-73. PubMed ID: 29643269
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Episodic molecular evolution of pituitary growth hormone in Cetartiodactyla.
    Maniou Z; Wallis OC; Wallis M
    J Mol Evol; 2004 Jun; 58(6):743-53. PubMed ID: 15461431
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The position of Hippopotamidae within Cetartiodactyla.
    Boisserie JR; Lihoreau F; Brunet M
    Proc Natl Acad Sci U S A; 2005 Feb; 102(5):1537-41. PubMed ID: 15677331
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromosome painting in Tragulidae facilitates the reconstruction of Ruminantia ancestral karyotype.
    Kulemzina AI; Yang F; Trifonov VA; Ryder OA; Ferguson-Smith MA; Graphodatsky AS
    Chromosome Res; 2011 May; 19(4):531-9. PubMed ID: 21445689
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phylogenetic assessment of molecular and morphological data for eutherian mammals.
    Liu FG; Miyamoto MM
    Syst Biol; 1999 Mar; 48(1):54-64. PubMed ID: 12078644
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolving between land and water: key questions on the emergence and history of the Hippopotamidae (Hippopotamoidea, Cetancodonta, Cetartiodactyla).
    Boisserie JR; Fisher RE; Lihoreau F; Weston EM
    Biol Rev Camb Philos Soc; 2011 Aug; 86(3):601-25. PubMed ID: 20946539
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Model dependence of the phylogenetic inference: relationship among carnivores, Perissodactyls and cetartiodactyls as inferred from mitochondrial genome sequences.
    Cao Y; Kim KS; Ha JH; Hasegawa M
    Genes Genet Syst; 1999 Oct; 74(5):211-7. PubMed ID: 10734603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. K-casein gene phylogeny of higher ruminants (Pecora, Artiodactyla).
    Cronin MA; Stuart R; Pierson BJ; Patton JC
    Mol Phylogenet Evol; 1996 Oct; 6(2):295-311. PubMed ID: 8899730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.