These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 22627514)

  • 101. Extended depth of focus by self-imaging wavefront division with the mirror tunnel.
    Sheil CJ; Wartak A; Spicer GLC; Tearney GJ
    J Opt Soc Am A Opt Image Sci Vis; 2022 Apr; 39(4):711-725. PubMed ID: 35471398
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Optical coherence refraction tomography.
    Zhou KC; Qian R; Degan S; Farsiu S; Izatt JA
    Nat Photonics; 2019 Nov; 13(11):794-802. PubMed ID: 35386729
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Extended focal depth Fourier domain optical coherence microscopy with a Bessel-beam - LP
    Sen D; Classen A; Fernández A; Grüner-Nielsen L; Gibbs HC; Esmaeili S; Hemmer P; Baltuska A; Sokolov AV; Leitgeb RA; Verhoef AJ
    Biomed Opt Express; 2021 Dec; 12(12):7327-7337. PubMed ID: 35003836
    [TBL] [Abstract][Full Text] [Related]  

  • 104. All-fiber probes for endoscopic optical coherence tomography of the large airways.
    Balakrishnan S; Oldenburg AL
    Appl Opt; 2021 Aug; 60(22):6385-6392. PubMed ID: 34612872
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Deep learning extended depth-of-field microscope for fast and slide-free histology.
    Jin L; Tang Y; Wu Y; Coole JB; Tan MT; Zhao X; Badaoui H; Robinson JT; Williams MD; Gillenwater AM; Richards-Kortum RR; Veeraraghavan A
    Proc Natl Acad Sci U S A; 2020 Dec; 117(52):33051-33060. PubMed ID: 33318169
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Ultrathin monolithic 3D printed optical coherence tomography endoscopy for preclinical and clinical use.
    Li J; Thiele S; Quirk BC; Kirk RW; Verjans JW; Akers E; Bursill CA; Nicholls SJ; Herkommer AM; Giessen H; McLaughlin RA
    Light Sci Appl; 2020; 9():124. PubMed ID: 32704357
    [TBL] [Abstract][Full Text] [Related]  

  • 107. 3D cellular-resolution imaging in arteries using few-mode interferometry.
    Yin B; Piao Z; Nishimiya K; Hyun C; Gardecki JA; Mauskapf A; Jaffer FA; Tearney GJ
    Light Sci Appl; 2019; 8():104. PubMed ID: 31798843
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Demonstration of Triband Multi-Focal Imaging with Optical Coherence Tomography.
    Nam AS; Ren J; Bouma BE; Vakoc BJ
    Appl Sci (Basel); 2018 Dec; 8(12):. PubMed ID: 31308961
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes.
    Li J; Fejes P; Lorenser D; Quirk BC; Noble PB; Kirk RW; Orth A; Wood FM; Gibson BC; Sampson DD; McLaughlin RA
    Sci Rep; 2018 Oct; 8(1):14789. PubMed ID: 30287830
    [TBL] [Abstract][Full Text] [Related]  

  • 110. μOCT imaging using depth of focus extension by self-imaging wavefront division in a common-path fiber optic probe.
    Yin B; Chu KK; Liang CP; Singh K; Reddy R; Tearney GJ
    Opt Express; 2016 Mar; 24(5):5555-5564. PubMed ID: 29092377
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain.
    Tamborski S; Lyu HC; Dolezyczek H; Malinowska M; Wilczynski G; Szlag D; Lasser T; Wojtkowski M; Szkulmowski M
    Biomed Opt Express; 2016 Nov; 7(11):4400-4414. PubMed ID: 27895982
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Supercontinuum as a light source for miniaturized endoscopes.
    Lu MK; Lin HY; Hsieh CC; Kao FJ
    Biomed Opt Express; 2016 Sep; 7(9):3335-3344. PubMed ID: 27699102
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Ultrathin lensed fiber-optic probe for optical coherence tomography.
    Qiu Y; Wang Y; Belfield KD; Liu X
    Biomed Opt Express; 2016 Jun; 7(6):2154-62. PubMed ID: 27375934
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Quantitative optical coherence elastography based on fiber-optic probe for in situ measurement of tissue mechanical properties.
    Qiu Y; Wang Y; Xu Y; Chandra N; Haorah J; Hubbi B; Pfister BJ; Liu X
    Biomed Opt Express; 2016 Feb; 7(2):688-700. PubMed ID: 26977372
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Motion-compensated hand-held common-path Fourier-domain optical coherence tomography probe for image-guided intervention.
    Huang Y; Liu X; Song C; Kang JU
    Biomed Opt Express; 2012 Dec; 3(12):3105-18. PubMed ID: 23243562
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Ultrathin fiber probes with extended depth of focus for optical coherence tomography.
    Lorenser D; Yang X; Sampson DD
    Opt Lett; 2012 May; 37(10):1616-8. PubMed ID: 22627514
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Ultrathin side-viewing needle probe for optical coherence tomography.
    Lorenser D; Yang X; Kirk RW; Quirk BC; McLaughlin RA; Sampson DD
    Opt Lett; 2011 Oct; 36(19):3894-6. PubMed ID: 21964133
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Uniform focusing with an extended depth range and increased working distance for optical coherence tomography by an ultrathin monolith fiber probe.
    Qiu J; Han T; Liu Z; Meng J; Ding Z
    Opt Lett; 2020 Feb; 45(4):976-979. PubMed ID: 32058521
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Etching-enabled extreme miniaturization of graded-index fiber-based optical coherence tomography probes.
    Abid A; Mittal S; Boutopoulos C
    J Biomed Opt; 2019 Nov; 25(3):1-5. PubMed ID: 31707773
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Optical coherence tomography for ultrahigh resolution in vivo imaging.
    Fujimoto JG
    Nat Biotechnol; 2003 Nov; 21(11):1361-7. PubMed ID: 14595364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.