These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 22627619)

  • 1. A gold nanocage-CNT hybrid for targeted imaging and photothermal destruction of cancer cells.
    Khan SA; Kanchanapally R; Fan Z; Beqa L; Singh AK; Senapati D; Ray PC
    Chem Commun (Camb); 2012 Jul; 48(53):6711-3. PubMed ID: 22627619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EphrinA I-targeted nanoshells for photothermal ablation of prostate cancer cells.
    Gobin AM; Moon JJ; West JL
    Int J Nanomedicine; 2008; 3(3):351-8. PubMed ID: 18990944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold nanocage assemblies for selective second harmonic generation imaging of cancer cell.
    Demeritte T; Fan Z; Sinha SS; Duan J; Pachter R; Ray PC
    Chemistry; 2014 Jan; 20(4):1017-22. PubMed ID: 24339156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods.
    Huang YF; Sefah K; Bamrungsap S; Chang HT; Tan W
    Langmuir; 2008 Oct; 24(20):11860-5. PubMed ID: 18817428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles.
    El-Sayed IH; Huang X; El-Sayed MA
    Cancer Lett; 2006 Jul; 239(1):129-35. PubMed ID: 16198049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aptamer-conjugated nanorods for targeted photothermal therapy of prostate cancer stem cells.
    Wang J; Sefah K; Altman MB; Chen T; You M; Zhao Z; Huang CZ; Tan W
    Chem Asian J; 2013 Oct; 8(10):2417-22. PubMed ID: 23757285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy.
    Van de Broek B; Devoogdt N; D'Hollander A; Gijs HL; Jans K; Lagae L; Muyldermans S; Maes G; Borghs G
    ACS Nano; 2011 Jun; 5(6):4319-28. PubMed ID: 21609027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold nano-popcorn attached SWCNT hybrid nanomaterial for targeted diagnosis and photothermal therapy of human breast cancer cells.
    Beqa L; Fan Z; Singh AK; Senapati D; Ray PC
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3316-24. PubMed ID: 21842867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy.
    Kuo WS; Chang YT; Cho KC; Chiu KC; Lien CH; Yeh CS; Chen SJ
    Biomaterials; 2012 Apr; 33(11):3270-8. PubMed ID: 22289264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells.
    Chen J; Wang D; Xi J; Au L; Siekkinen A; Warsen A; Li ZY; Zhang H; Xia Y; Li X
    Nano Lett; 2007 May; 7(5):1318-22. PubMed ID: 17430005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold hybrid nanoparticles for targeted phototherapy and cancer imaging.
    Kirui DK; Rey DA; Batt CA
    Nanotechnology; 2010 Mar; 21(10):105105. PubMed ID: 20154383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indocyanine green-containing nanostructure as near infrared dual-functional targeting probes for optical imaging and photothermal therapy.
    Zheng X; Xing D; Zhou F; Wu B; Chen WR
    Mol Pharm; 2011 Apr; 8(2):447-56. PubMed ID: 21197955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum dot tailored to single wall carbon nanotubes: a multifunctional hybrid nanoconstruct for cellular imaging and targeted photothermal therapy.
    Nair LV; Nagaoka Y; Maekawa T; Sakthikumar D; Jayasree RS
    Small; 2014 Jul; 10(14):2771-5, 2740. PubMed ID: 24692349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zwitterionic phosphorylcholine as a better ligand for gold nanorods cell uptake and selective photothermal ablation of cancer cells.
    Zhou W; Shao J; Jin Q; Wei Q; Tang J; Ji J
    Chem Commun (Camb); 2010 Mar; 46(9):1479-81. PubMed ID: 20162154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of nanoparticles for targeted, noninvasive thermal destruction of malignant cells.
    Cherukuri P; Curley SA
    Methods Mol Biol; 2010; 624():359-73. PubMed ID: 20217608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The enhancement effect of gold nanoparticles in drug delivery and as biomarkers of drug-resistant cancer cells.
    Li J; Wang X; Wang C; Chen B; Dai Y; Zhang R; Song M; Lv G; Fu D
    ChemMedChem; 2007 Mar; 2(3):374-8. PubMed ID: 17206735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor fibroblast specific activation of a hybrid ferritin nanocage-based optical probe for tumor microenvironment imaging.
    Ji T; Zhao Y; Wang J; Zheng X; Tian Y; Zhao Y; Nie G
    Small; 2013 Jul; 9(14):2427-31. PubMed ID: 23853124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells.
    Au L; Zheng D; Zhou F; Li ZY; Li X; Xia Y
    ACS Nano; 2008 Aug; 2(8):1645-52. PubMed ID: 19206368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-Induced aggregation of gold nanoparticles for photothermal cancer therapy.
    Nam J; Won N; Jin H; Chung H; Kim S
    J Am Chem Soc; 2009 Sep; 131(38):13639-45. PubMed ID: 19772360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient near-IR hyperthermia and intense nonlinear optical imaging contrast on the gold nanorod-in-shell nanostructures.
    Hu KW; Liu TM; Chung KY; Huang KS; Hsieh CT; Sun CK; Yeh CS
    J Am Chem Soc; 2009 Oct; 131(40):14186-7. PubMed ID: 19772320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.