These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 22627805)

  • 1. Improving piezoelectric cell printing accuracy and reliability through neutral buoyancy of suspensions.
    Chahal D; Ahmadi A; Cheung KC
    Biotechnol Bioeng; 2012 Nov; 109(11):2932-40. PubMed ID: 22627805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of surfactant and gentle agitation on inkjet dispensing of living cells.
    Parsa S; Gupta M; Loizeau F; Cheung KC
    Biofabrication; 2010 Jun; 2(2):025003. PubMed ID: 20811131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing.
    Saunders RE; Gough JE; Derby B
    Biomaterials; 2008 Jan; 29(2):193-203. PubMed ID: 17936351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the hydrodynamic response of cells in drop on demand piezoelectric inkjet nozzles.
    Cheng E; Yu H; Ahmadi A; Cheung KC
    Biofabrication; 2016 Jan; 8(1):015008. PubMed ID: 26824728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving Single-Cell Encapsulation Efficiency and Reliability through Neutral Buoyancy of Suspension.
    Liu H; Li M; Wang Y; Piper J; Jiang L
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31952228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell micropatterning on an albumin-based substrate using an inkjet printing technique.
    Yamazoe H; Tanabe T
    J Biomed Mater Res A; 2009 Dec; 91(4):1202-9. PubMed ID: 19148930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate stiffness influences high resolution printing of living cells with an ink-jet system.
    Tirella A; Vozzi F; De Maria C; Vozzi G; Sandri T; Sassano D; Cognolato L; Ahluwalia A
    J Biosci Bioeng; 2011 Jul; 112(1):79-85. PubMed ID: 21497548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inkjet printing for high-throughput cell patterning.
    Roth EA; Xu T; Das M; Gregory C; Hickman JJ; Boland T
    Biomaterials; 2004 Aug; 25(17):3707-15. PubMed ID: 15020146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viability and electrophysiology of neural cell structures generated by the inkjet printing method.
    Xu T; Gregory CA; Molnar P; Cui X; Jalota S; Bhaduri SB; Boland T
    Biomaterials; 2006 Jul; 27(19):3580-8. PubMed ID: 16516288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology.
    Nishiyama Y; Nakamura M; Henmi C; Yamaguchi K; Mochizuki S; Nakagawa H; Takiura K
    J Biomech Eng; 2009 Mar; 131(3):035001. PubMed ID: 19154078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliable inkjet printing of chondrocytes and MSCs using reservoir agitation.
    Dudman JPR; Ferreira AM; Gentile P; Wang X; Ribeiro RDC; Benning M; Dalgarno KW
    Biofabrication; 2020 Aug; 12(4):045024. PubMed ID: 32629440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation.
    Ilkhanizadeh S; Teixeira AI; Hermanson O
    Biomaterials; 2007 Sep; 28(27):3936-43. PubMed ID: 17576007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatible inkjet printing technique for designed seeding of individual living cells.
    Nakamura M; Kobayashi A; Takagi F; Watanabe A; Hiruma Y; Ohuchi K; Iwasaki Y; Horie M; Morita I; Takatani S
    Tissue Eng; 2005; 11(11-12):1658-66. PubMed ID: 16411811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Piezoelectric inkjet printing of a cross-hatch immunoassay on a disposable nylon membrane.
    Stewart TN; Pierson BE; Aggarwal R; Narayan RJ
    Biotechnol J; 2009 Feb; 4(2):206-9. PubMed ID: 19226553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inkjet printing of viable mammalian cells.
    Xu T; Jin J; Gregory C; Hickman JJ; Boland T
    Biomaterials; 2005 Jan; 26(1):93-9. PubMed ID: 15193884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Custom-made artificial bones fabricated by an inkjet printing technology].
    Igawa K; Chung UI; Tei Y
    Clin Calcium; 2008 Dec; 18(12):1737-43. PubMed ID: 19043187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional inkjet biofabrication based on designed images.
    Arai K; Iwanaga S; Toda H; Genci C; Nishiyama Y; Nakamura M
    Biofabrication; 2011 Sep; 3(3):034113. PubMed ID: 21900730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deposition of photocatalytically active TiO2 films by inkjet printing of TiO2 nanoparticle suspensions obtained from microwave-assisted hydrothermal synthesis.
    Arin M; Lommens P; Hopkins SC; Pollefeyt G; Van der Eycken J; Ricart S; Granados X; Glowacki BA; Van Driessche I
    Nanotechnology; 2012 Apr; 23(16):165603. PubMed ID: 22460736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of inkjet printing technology to produce test materials of 1,3,5-trinitro-1,3,5 triazcyclohexane for trace explosive analysis.
    Windsor E; Najarro M; Bloom A; Benner B; Fletcher R; Lareau R; Gillen G
    Anal Chem; 2010 Oct; 82(20):8519-24. PubMed ID: 20873797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-cell printer: automated, on demand, and label free.
    Gross A; Schöndube J; Niekrawitz S; Streule W; Riegger L; Zengerle R; Koltay P
    J Lab Autom; 2013 Dec; 18(6):504-18. PubMed ID: 24222537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.