These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 2262787)
1. Temperature adaptation in yeasts: the role of fatty acids. Suutari M; Liukkonen K; Laakso S J Gen Microbiol; 1990 Aug; 136(8):1469-74. PubMed ID: 2262787 [TBL] [Abstract][Full Text] [Related]
2. Temperature adaptation in Lactobacillus fermentum: interconversions of oleic, vaccenic and dihydrosterulic acids. Suutari M; Laakso S J Gen Microbiol; 1992 Mar; 138(3):445-50. PubMed ID: 1593259 [TBL] [Abstract][Full Text] [Related]
3. Microbial fatty acids and thermal adaptation. Suutari M; Laakso S Crit Rev Microbiol; 1994; 20(4):285-328. PubMed ID: 7857519 [TBL] [Abstract][Full Text] [Related]
4. Adaptational changes in cellular fatty acid branching and unsaturation of Aeromonas species as a response to growth temperature and salinity. Chihib NE; Tierny Y; Mary P; Hornez JP Int J Food Microbiol; 2005 Jun; 102(1):113-9. PubMed ID: 15925007 [TBL] [Abstract][Full Text] [Related]
5. Leucosporidium yeasts: obligate psychrophiles which alter membrane-lipid and cytochrome composition with temperature. Watson K; Arthur H J Gen Microbiol; 1976 Nov; 97(1):11-8. PubMed ID: 993782 [TBL] [Abstract][Full Text] [Related]
6. Membrane phospholipids in temperature adaptation of Candida utilis: alterations in fatty acid chain length and unsaturation. Suutari M; Rintamäki A; Laakso S J Lipid Res; 1997 Apr; 38(4):790-4. PubMed ID: 9144093 [TBL] [Abstract][Full Text] [Related]
7. Thermal adaptation in yeast: growth temperatures, membrane lipid, and cytochrome composition of psychrophilic, mesophilic, and thermophilic yeasts. Arthur H; Watson K J Bacteriol; 1976 Oct; 128(1):56-68. PubMed ID: 988016 [TBL] [Abstract][Full Text] [Related]
8. Unsaturated and branched chain-fatty acids in temperature adaptation of Bacillus subtilis and Bacillus megaterium. Suutari M; Laakso S Biochim Biophys Acta; 1992 Jun; 1126(2):119-24. PubMed ID: 1627613 [TBL] [Abstract][Full Text] [Related]
9. Influence of ethanol and temperature on the cellular fatty acid composition of Zygosaccharomyces bailii spoilage yeasts. Baleiras Couto MM; Huis in't Veld JH J Appl Bacteriol; 1995 Mar; 78(3):327-34. PubMed ID: 7730208 [TBL] [Abstract][Full Text] [Related]
10. Growth, lipid accumulation, and fatty acid composition in obligate psychrophilic, facultative psychrophilic, and mesophilic yeasts. Rossi M; Buzzini P; Cordisco L; Amaretti A; Sala M; Raimondi S; Ponzoni C; Pagnoni UM; Matteuzzi D FEMS Microbiol Ecol; 2009 Sep; 69(3):363-72. PubMed ID: 19624740 [TBL] [Abstract][Full Text] [Related]
11. Temperature and nutrient availability control growth rate and fatty acid composition of facultatively psychrophilic Cobetia marina strain L-2. Yumoto I; Hirota K; Iwata H; Akutsu M; Kusumoto K; Morita N; Ezura Y; Okuyama H; Matsuyama H Arch Microbiol; 2004 May; 181(5):345-51. PubMed ID: 15067498 [TBL] [Abstract][Full Text] [Related]
12. Taxonomic characterization, adaptation strategies and biotechnological potential of cryophilic yeasts from ice cores of Midre Lovénbreen glacier, Svalbard, Arctic. Singh P; Tsuji M; Singh SM; Roy U; Hoshino T Cryobiology; 2013 Apr; 66(2):167-75. PubMed ID: 23353800 [TBL] [Abstract][Full Text] [Related]
13. Changes in fatty acid branching and unsaturation of Streptomyces griseus and Brevibacterium fermentans as a response to growth temperature. Suutari M; Laakso S Appl Environ Microbiol; 1992 Jul; 58(7):2338-40. PubMed ID: 1637171 [TBL] [Abstract][Full Text] [Related]
14. Temperature- and growth-phase-regulated changes in lipid fatty acid structures of psychrotolerant groundwater Proteobacteria. Männistö MK; Puhakka JA Arch Microbiol; 2001 Dec; 177(1):41-6. PubMed ID: 11797043 [TBL] [Abstract][Full Text] [Related]
16. [Fatty acid makeup of the lipids in soil and epiphytic yeasts]. Zviagintseva IS; Pitriuk IA; Bab'eva IP; Ruban EL Mikrobiologiia; 1975; 44(4):625-31. PubMed ID: 1177776 [TBL] [Abstract][Full Text] [Related]
17. The effect of ethanol and specific growth rate on the lipid content and composition of Saccharomyces cerevisiae grown anaerobically in a chemostat. Arneborg N; Høy CE; Jørgensen OB Yeast; 1995 Aug; 11(10):953-9. PubMed ID: 8533470 [TBL] [Abstract][Full Text] [Related]
18. Total fatty acid content of the plasma membrane of Saccharomyces cerevisiae is more responsible for ethanol tolerance than the degree of unsaturation. Kim HS; Kim NR; Choi W Biotechnol Lett; 2011 Mar; 33(3):509-15. PubMed ID: 21063748 [TBL] [Abstract][Full Text] [Related]
19. Increased cellular fatty acid desaturation as a possible key factor in thermotolerance in Saccharomyces cerevisiae. Guerzoni ME; Ferruzzi M; Sinigaglia M; Criscuoli GC Can J Microbiol; 1997 Jun; 43(6):569-76. PubMed ID: 9226876 [TBL] [Abstract][Full Text] [Related]
20. Effect of growth temperature on the fatty acid composition of Mycobacterium phlei. Suutari M; Laakso S Arch Microbiol; 1993; 159(2):119-23. PubMed ID: 8439233 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]