These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 2262794)

  • 1. Extensive heterogeneity of the protein composition of Chlamydia trachomatis following serial passage in two different cell lines.
    Goswami PC; Vretou E; Bose SK
    J Gen Microbiol; 1990 Aug; 136(8):1623-9. PubMed ID: 2262794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adherence of multiple serovars of Chlamydia trachomatis to a common receptor on HeLa and McCoy cells is mediated by thermolabile protein(s).
    Vretou E; Goswami PC; Bose SK
    J Gen Microbiol; 1989 Dec; 135(12):3229-37. PubMed ID: 2636258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection and antigenicity of chlamydial proteins that bind eukaryotic cell membrane proteins.
    Baghian A; Schnorr KL
    Am J Vet Res; 1992 Jun; 53(6):980-6. PubMed ID: 1378251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The molecular biology and diagnostics of Chlamydia trachomatis.
    Birkelund S
    Dan Med Bull; 1992 Aug; 39(4):304-20. PubMed ID: 1526183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A heat-labile protein of Chlamydia trachomatis binds to HeLa cells and inhibits the adherence of chlamydiae.
    Joseph TD; Bose SK
    Proc Natl Acad Sci U S A; 1991 May; 88(9):4054-8. PubMed ID: 2023955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recombinant Escherichia coli clones expressing Chlamydia trachomatis gene products attach to human endometrial epithelial cells.
    Schmiel DH; Knight ST; Raulston JE; Choong J; Davis CH; Wyrick PB
    Infect Immun; 1991 Nov; 59(11):4001-12. PubMed ID: 1937759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Host passage-dependent wheat germ agglutinin-binding proteins of Chlamydia trachomatis.
    Goswami PC; Vretou E; Bose SK
    FEMS Microbiol Lett; 1991 Jun; 65(1):53-6. PubMed ID: 1874403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polypeptide composition of Chlamydia trachomatis.
    Salari SH; Ward ME
    J Gen Microbiol; 1981 Apr; 123(2):197-207. PubMed ID: 7320696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Host modification of the adherence properties of Chlamydia trachomatis.
    Bose SK; Goswami PC
    J Gen Microbiol; 1986 Jun; 132(6):1631-9. PubMed ID: 3806051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative proteome analysis of Chlamydia trachomatis serovar A, D and L2.
    Shaw AC; Gevaert K; Demol H; Hoorelbeke B; Vandekerckhove J; Larsen MR; Roepstorff P; Holm A; Christiansen G; Birkelund S
    Proteomics; 2002 Feb; 2(2):164-86. PubMed ID: 11840563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface components of HeLa cells that inhibit cytadherence of Chlamydia trachomatis.
    Joseph TD; Bose SK
    FEMS Microbiol Lett; 1992 Mar; 70(2):177-80. PubMed ID: 1587463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein disulfide isomerase, a component of the estrogen receptor complex, is associated with Chlamydia trachomatis serovar E attached to human endometrial epithelial cells.
    Davis CH; Raulston JE; Wyrick PB
    Infect Immun; 2002 Jul; 70(7):3413-8. PubMed ID: 12065480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of interferon gamma on Chlamydia trachomatis serovar A and L2 protein expression investigated by two-dimensional gel electrophoresis.
    Shaw AC; Christiansen G; Birkelund S
    Electrophoresis; 1999; 20(4-5):775-80. PubMed ID: 10344247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of Chlamydia trachomatis serovar E to iron restriction in vitro and evidence for iron-regulated chlamydial proteins.
    Raulston JE
    Infect Immun; 1997 Nov; 65(11):4539-47. PubMed ID: 9353031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genes required for assembly and function of the protein synthetic system in Chlamydia trachomatis are expressed early in elementary to reticulate body transformation.
    Gérard HC; Whittum-Hudson JA; Hudson AP
    Mol Gen Genet; 1997 Aug; 255(6):637-42. PubMed ID: 9323368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation in the mutation frequency determining quinolone resistance in Chlamydia trachomatis serovars L2 and D.
    Rupp J; Solbach W; Gieffers J
    J Antimicrob Chemother; 2008 Jan; 61(1):91-4. PubMed ID: 18033786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Denaturing gradient gel electrophoresis analysis for the detection of point mutations in the Chlamydia trachomatis major outer-membrane protein gene.
    Sayada C; Denamur E; Grandchamp B; Orfila J; Elion J
    J Med Microbiol; 1995 Jul; 43(1):14-25. PubMed ID: 7608950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of immunodominant linear B-cell epitopes within the major outer membrane protein of Chlamydia trachomatis.
    Zhu S; Chen J; Zheng M; Gong W; Xue X; Li W; Zhang L
    Acta Biochim Biophys Sin (Shanghai); 2010 Nov; 42(11):771-8. PubMed ID: 20923859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of type III secretion by cell-free Chlamydia trachomatis elementary bodies.
    Jamison WP; Hackstadt T
    Microb Pathog; 2008; 45(5-6):435-40. PubMed ID: 18984037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective translocation of annexins during intracellular redistribution of Chlamydia trachomatis in HeLa and McCoy cells.
    Majeed M; Ernst JD; Magnusson KE; Kihlström E; Stendahl O
    Infect Immun; 1994 Jan; 62(1):126-34. PubMed ID: 8262618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.