BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 22628022)

  • 1. Genetic modifications and introduction of heterologous pdc genes in Enterococcus faecalis for its use in production of bioethanol.
    Rana NF; Gente S; Rincé A; Auffray Y; Laplace JM
    Biotechnol Lett; 2012 Sep; 34(9):1651-7. PubMed ID: 22628022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid.
    Jang YS; Woo HM; Im JA; Kim IH; Lee SY
    Appl Microbiol Biotechnol; 2013 Nov; 97(21):9355-63. PubMed ID: 24013291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction and characterization of three lactate dehydrogenase-negative Enterococcus faecalis V583 mutants.
    Jönsson M; Saleihan Z; Nes IF; Holo H
    Appl Environ Microbiol; 2009 Jul; 75(14):4901-3. PubMed ID: 19465534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-production of acetone and ethanol with molar ratio control enables production of improved gasoline or jet fuel blends.
    Baer ZC; Bormann S; Sreekumar S; Grippo A; Toste FD; Blanch HW; Clark DS
    Biotechnol Bioeng; 2016 Oct; 113(10):2079-87. PubMed ID: 26987294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. L-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss.
    Murakami N; Oba M; Iwamoto M; Tashiro Y; Noguchi T; Bonkohara K; Abdel-Rahman MA; Zendo T; Shimoda M; Sakai K; Sonomoto K
    J Biosci Bioeng; 2016 Jan; 121(1):89-95. PubMed ID: 26168904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome, proteome, and metabolite analyses of a lactate dehydrogenase-negative mutant of Enterococcus faecalis V583.
    Mehmeti I; Jönsson M; Fergestad EM; Mathiesen G; Nes IF; Holo H
    Appl Environ Microbiol; 2011 Apr; 77(7):2406-13. PubMed ID: 21296946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of lipoic acid in product formation by Enterococcus faecalis NCTC 775 and reconstitution in vivo and in vitro of the pyruvate dehydrogenase complex.
    Snoep JL; van Bommel M; Lubbers F; Teixeira de Mattos MJ; Neijssel OM
    J Gen Microbiol; 1993 Jun; 139 Pt 6():1325-9. PubMed ID: 8360624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic engineering of Clostridium thermocellum DSM1313 for enhanced ethanol production.
    Kannuchamy S; Mukund N; Saleena LM
    BMC Biotechnol; 2016 May; 16 Suppl 1(Suppl 1):34. PubMed ID: 27213504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Clostridium acetobutylicum for alcohol production.
    Hou X; Peng W; Xiong L; Huang C; Chen X; Chen X; Zhang W
    J Biotechnol; 2013 Jun; 166(1-2):25-33. PubMed ID: 23651949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactic acid fermentation is the main aerobic metabolic pathway in Enterococcus faecalis metabolizing a high concentration of glycerol.
    Doi Y
    Appl Microbiol Biotechnol; 2018 Dec; 102(23):10183-10192. PubMed ID: 30232536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights into the butyric acid metabolism of Clostridium acetobutylicum.
    Lehmann D; Radomski N; Lütke-Eversloh T
    Appl Microbiol Biotechnol; 2012 Dec; 96(5):1325-39. PubMed ID: 22576943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioethanol production by heterologous expression of Pdc and AdhII in Streptomyces lividans.
    Lee JS; Chi WJ; Hong SK; Yang JW; Chang YK
    Appl Microbiol Biotechnol; 2013 Jul; 97(13):6089-97. PubMed ID: 23681589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of a Lactobacillus plantarum double ldh knockout strain for enhanced ethanol production.
    Liu S; Nichols NN; Dien BS; Cotta MA
    J Ind Microbiol Biotechnol; 2006 Jan; 33(1):1-7. PubMed ID: 16193282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production through co-utilization of glucose and xylose.
    Yu L; Xu M; Tang IC; Yang ST
    Biotechnol Bioeng; 2015 Oct; 112(10):2134-41. PubMed ID: 25894463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii.
    Banerjee A; Leang C; Ueki T; Nevin KP; Lovley DR
    Appl Environ Microbiol; 2014 Apr; 80(8):2410-6. PubMed ID: 24509933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acids.
    Sanda T; Hasunuma T; Matsuda F; Kondo A
    Bioresour Technol; 2011 Sep; 102(17):7917-24. PubMed ID: 21704512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations.
    Sillers R; Al-Hinai MA; Papoutsakis ET
    Biotechnol Bioeng; 2009 Jan; 102(1):38-49. PubMed ID: 18726959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Barotolerant variant of Streptococcus faecalis with reduced sensitivity to glucose catabolite repression.
    Campbell J; Bender GR; Marquis RE
    Can J Microbiol; 1985 Jul; 31(7):644-50. PubMed ID: 3928124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced butanol production in Clostridium acetobutylicum ATCC 824 by double overexpression of 6-phosphofructokinase and pyruvate kinase genes.
    Ventura JR; Hu H; Jahng D
    Appl Microbiol Biotechnol; 2013 Aug; 97(16):7505-16. PubMed ID: 23838793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production: effects of CoA transferase.
    Yu L; Zhao J; Xu M; Dong J; Varghese S; Yu M; Tang IC; Yang ST
    Appl Microbiol Biotechnol; 2015 Jun; 99(11):4917-30. PubMed ID: 25851718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.