These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 22629157)

  • 21. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride.
    Boudrahem F; Aissani-Benissad F; Aït-Amar H
    J Environ Manage; 2009 Jul; 90(10):3031-9. PubMed ID: 19447542
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biosorption of arsenic from aqueous solution using dye waste.
    Nigam S; Vankar PS; Gopal K
    Environ Sci Pollut Res Int; 2013 Feb; 20(2):1161-72. PubMed ID: 22661261
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of heat-inactivated marine Aspergillus flavus as a novel biosorbent for removal of Cd(II), Hg(II), and Pb(II) from water.
    Mahmoud ME; El Zokm GM; Farag AEM; Abdelwahab MS
    Environ Sci Pollut Res Int; 2017 Aug; 24(22):18218-18228. PubMed ID: 28634799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of PEI-modified biomass and biosorption of Cu(II), Pb(II) and Ni(II).
    Deng S; Ting YP
    Water Res; 2005 May; 39(10):2167-77. PubMed ID: 15927227
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Equilibrium, kinetic and thermodynamic studies on the removal of U(VI) by low cost agricultural waste.
    Kausar A; Bhatti HN; MacKinnon G
    Colloids Surf B Biointerfaces; 2013 Nov; 111():124-33. PubMed ID: 23787279
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly effective removal of heavy metals by polymer-based zirconium phosphate: a case study of lead ion.
    Pan BC; Zhang QR; Zhang WM; Pan BJ; Du W; Lv L; Zhang QJ; Xu ZW; Zhang QX
    J Colloid Interface Sci; 2007 Jun; 310(1):99-105. PubMed ID: 17336317
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modification of chitosan macromolecule and its mechanism for the removal of Pb(II) ions from aqueous environment.
    Yuvaraja G; Pang Y; Chen DY; Kong LJ; Mehmood S; Subbaiah MV; Rao DS; Mouli Pavuluri C; Wen JC; Reddy GM
    Int J Biol Macromol; 2019 Sep; 136():177-188. PubMed ID: 31173826
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal of Pb(II) from wastewater using wheat bran.
    Bulut Y; Baysal Z
    J Environ Manage; 2006 Jan; 78(2):107-13. PubMed ID: 16046250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dowex anion exchanger-loaded-baker's yeast as bi-functionalized biosorbents for selective extraction of anionic and cationic mercury(II) species.
    Mahmoud ME; Yakout AA; Osman MM
    J Hazard Mater; 2009 May; 164(2-3):1036-44. PubMed ID: 18930347
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pb(II) sorption from aqueous solution by novel biochar loaded with nano-particles.
    Wang C; Wang H
    Chemosphere; 2018 Feb; 192():1-4. PubMed ID: 29091791
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel magnetic graphene oxide functionalized cyanopropyl nanocomposite as an adsorbent for the removal of Pb(II) ions from aqueous media: equilibrium and kinetic studies.
    Gabris MA; Jume BH; Rezaali M; Shahabuddin S; Nodeh HR; Saidur R
    Environ Sci Pollut Res Int; 2018 Sep; 25(27):27122-27132. PubMed ID: 30022389
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of novel magnetic nano-sorbent functionalized with N-methyl-D-glucamine by click chemistry and removal of boron with magnetic separation method.
    Tural S; Ece MŞ; Tural B
    Ecotoxicol Environ Saf; 2018 Oct; 162():245-252. PubMed ID: 29990737
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Facile preparation of magnetic carbonaceous nanoparticles for Pb2+ ions removal.
    Nata IF; Salim GW; Lee CK
    J Hazard Mater; 2010 Nov; 183(1-3):853-8. PubMed ID: 20800347
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoalginate based biosorbent for the removal of lead ions from aqueous solutions: Equilibrium and kinetic studies.
    Geetha P; Latha MS; Pillai SS; Koshy M
    Ecotoxicol Environ Saf; 2015 Dec; 122():17-23. PubMed ID: 26164724
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring the arsenic removal potential of various biosorbents from water.
    Shakoor MB; Niazi NK; Bibi I; Shahid M; Saqib ZA; Nawaz MF; Shaheen SM; Wang H; Tsang DCW; Bundschuh J; Ok YS; Rinklebe J
    Environ Int; 2019 Feb; 123():567-579. PubMed ID: 30622081
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: equilibrium and kinetic studies.
    Al-Degs YS; El-Barghouthi MI; Issa AA; Khraisheh MA; Walker GM
    Water Res; 2006 Aug; 40(14):2645-58. PubMed ID: 16839582
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biosorption of Rhodamine B onto novel biosorbents from Kappaphycus alvarezii, Gracilaria salicornia and Gracilaria edulis.
    Selvakumar A; Rangabhashiyam S
    Environ Pollut; 2019 Dec; 255(Pt 2):113291. PubMed ID: 31600701
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extractive fixed-site polymer sorbent for selective boron removal from natural water.
    Thakur N; Kumar SA; Shinde RN; Pandey AK; Kumar SD; Reddy AV
    J Hazard Mater; 2013 Sep; 260():1023-31. PubMed ID: 23892170
    [TBL] [Abstract][Full Text] [Related]  

  • 39. As(III) and As(V) sorption on iron-modified non-pyrolyzed and pyrolyzed biomass from Petroselinum crispum (parsley).
    Jiménez-Cedillo MJ; Olguín MT; Fall C; Colin-Cruz A
    J Environ Manage; 2013 Mar; 117():242-52. PubMed ID: 23376307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption and desorption of potentially toxic metals on modified biosorbents through new green grafting process.
    Tran HN; Chao HP
    Environ Sci Pollut Res Int; 2018 May; 25(13):12808-12820. PubMed ID: 29476368
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.