These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 22629194)

  • 1. Statistical evaluation and optimization of factors affecting the leaching performance of copper flotation waste.
    Coruh S; Elevli S; Geyikçi F
    ScientificWorldJournal; 2012; 2012():758719. PubMed ID: 22629194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaching characteristics of copper flotation waste before and after vitrification.
    Coruh S; Ergun ON
    J Environ Manage; 2006 Dec; 81(4):333-8. PubMed ID: 16730115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leaching behaviour and mechanical properties of copper flotation waste in stabilized/solidified products.
    Mesci B; Coruh S; Ergun ON
    Waste Manag Res; 2009 Feb; 27(1):70-7. PubMed ID: 19220995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of copper flotation waste using red mud and clinoptilolite.
    Coruh S
    Waste Manag Res; 2008 Oct; 26(5):409-18. PubMed ID: 18927060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of environmental compatibility of EAFD using different leaching standards.
    Sebag MG; Korzenowski C; Bernardes AM; Vilela AC
    J Hazard Mater; 2009 Jul; 166(2-3):670-5. PubMed ID: 19223119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition.
    Jin Z; Liu T; Yang Y; Jackson D
    Ecotoxicol Environ Saf; 2014 Jun; 104():43-50. PubMed ID: 24632122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper recovery from waste printed circuit boards by the flotation-leaching process optimized using response surface methodology.
    Wang C; Sun R; Xing B
    J Air Waste Manag Assoc; 2021 Dec; 71(12):1483-1491. PubMed ID: 33433266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative evaluation of environmental risks of flotation tailings from hydrothermal sulfidation-flotation process.
    Xie XD; Min XB; Chai LY; Tang CJ; Liang YJ; Li M; Ke Y; Chen J; Wang Y
    Environ Sci Pollut Res Int; 2013 Sep; 20(9):6050-8. PubMed ID: 23529403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosorption of chromium, copper and zinc by wine-processing waste sludge: single and multi-component system study.
    Liu CC; Wang MK; Chiou CS; Li YS; Yang CY; Lin YA
    J Hazard Mater; 2009 Nov; 171(1-3):386-92. PubMed ID: 19586716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of pH on the leaching behaviour of inorganic components from municipal solid waste APC residues.
    Quina MJ; Bordado JC; Quinta-Ferreira RM
    Waste Manag; 2009 Sep; 29(9):2483-93. PubMed ID: 19545989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of isosaccharinic acid (ISA) on the mobilization of metals in municipal solid waste incineration (MSWI) dry scrubber residue.
    Svensson M; Berg M; Ifwer K; Sjöblom R; Ecke H
    J Hazard Mater; 2007 Jun; 144(1-2):477-84. PubMed ID: 17118536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of brown and black pigments by using flotation waste from copper slag.
    Ozel E; Turan S; Coruh S; Ergun ON
    Waste Manag Res; 2006 Apr; 24(2):125-33. PubMed ID: 16634227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaching and selective copper recovery from acidic leachates of Três Marias zinc plant (MG, Brazil) metallurgical purification residues.
    Sethurajan M; Huguenot D; Lens PN; Horn HA; Figueiredo LH; van Hullebusch ED
    J Environ Manage; 2016 Jul; 177():26-35. PubMed ID: 27074201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment of combined acid mine drainage (AMD)--flotation circuit effluents from copper mine via Fenton's process.
    Mahiroglu A; Tarlan-Yel E; Sevimli MF
    J Hazard Mater; 2009 Jul; 166(2-3):782-7. PubMed ID: 19147282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Selective recovery of copper, zinc and nickel from printed circuit boards by ammonia leaching under pressure].
    Wang M; Cao HB; Zhang Y
    Huan Jing Ke Xue; 2011 Feb; 32(2):596-602. PubMed ID: 21528589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fate of Cu, Zn, Pb and Cd during the pyrolysis of sewage sludge at different temperatures.
    He YD; Zhai YB; Li CT; Yang F; Chen L; Fan XP; Peng WF; Fu ZM
    Environ Technol; 2010 Apr; 31(5):567-74. PubMed ID: 20480831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of rice straw as biosorbent for removal of Cu(II), Zn(II), Cd(II) and Hg(II) ions in industrial effluents.
    Rocha CG; Zaia DA; Alfaya RV; Alfaya AA
    J Hazard Mater; 2009 Jul; 166(1):383-8. PubMed ID: 19131165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal removal from waste waters by ion flotation.
    Polat H; Erdogan D
    J Hazard Mater; 2007 Sep; 148(1-2):267-73. PubMed ID: 17374447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the possibility of copper recovery from the flotation tailings by acid leaching.
    Antonijević MM; Dimitrijević MD; Stevanović ZO; Serbula SM; Bogdanovic GD
    J Hazard Mater; 2008 Oct; 158(1):23-34. PubMed ID: 18329798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper removal from oil-field brine by coprecipitation.
    Khosravi J; Alamdari A
    J Hazard Mater; 2009 Jul; 166(2-3):695-700. PubMed ID: 19157701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.