These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 22629326)
1. Normalized lift: an energy interpretation of the lift coefficient simplifies comparisons of the lifting ability of rotating and flapping surfaces. Burgers P; Alexander DE PLoS One; 2012; 7(5):e36732. PubMed ID: 22629326 [TBL] [Abstract][Full Text] [Related]
2. Wing-wake interaction: comparison of 2D and 3D flapping wings in hover flight. Lee YJ; Lua KB Bioinspir Biomim; 2018 Sep; 13(6):066003. PubMed ID: 30132443 [TBL] [Abstract][Full Text] [Related]
3. Proximity to the water surface markedly enhances the force production on underwater flapping wings. Bhat SS; Medina A; Tian FB; Young J; Lai JCS; Ravi S PLoS One; 2024; 19(3):e0299542. PubMed ID: 38478544 [TBL] [Abstract][Full Text] [Related]
4. An aerodynamic model for insect flapping wings in forward flight. Han JS; Chang JW; Han JH Bioinspir Biomim; 2017 Mar; 12(3):036004. PubMed ID: 28362636 [TBL] [Abstract][Full Text] [Related]
5. Hovering efficiency comparison of rotary and flapping flight for rigid rectangular wings via dimensionless multi-objective optimization. Bayiz Y; Ghanaatpishe M; Fathy H; Cheng B Bioinspir Biomim; 2018 May; 13(4):046002. PubMed ID: 29557347 [TBL] [Abstract][Full Text] [Related]
6. To tread or not to tread: comparison between water treading and conventional flapping wing kinematics. Krishna S; Gehrke A; Mulleners K Bioinspir Biomim; 2022 Nov; 17(6):. PubMed ID: 36228610 [TBL] [Abstract][Full Text] [Related]
7. Optimal pitching axis location of flapping wings for efficient hovering flight. Wang Q; Goosen JFL; van Keulen F Bioinspir Biomim; 2017 Sep; 12(5):056001. PubMed ID: 28632144 [TBL] [Abstract][Full Text] [Related]
8. The role of the leading edge vortex in lift augmentation of steadily revolving wings: a change in perspective. Nabawy MRA; Crowther WJ J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28747395 [TBL] [Abstract][Full Text] [Related]
9. Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl. Usherwood JR; Lehmann FO J R Soc Interface; 2008 Nov; 5(28):1303-7. PubMed ID: 18477538 [TBL] [Abstract][Full Text] [Related]
10. Axial propulsion with flapping and rotating wings, a comparison of potential efficiency. Kroninger CM Bioinspir Biomim; 2018 Apr; 13(3):036012. PubMed ID: 29461251 [TBL] [Abstract][Full Text] [Related]
11. Effect of flexural and torsional wing flexibility on lift generation in hoverfly flight. Tanaka H; Whitney JP; Wood RJ Integr Comp Biol; 2011 Jul; 51(1):142-50. PubMed ID: 21622947 [TBL] [Abstract][Full Text] [Related]
12. Lift enhancement by bats' dynamically changing wingspan. Wang S; Zhang X; He G; Liu T J R Soc Interface; 2015 Dec; 12(113):20150821. PubMed ID: 26701882 [TBL] [Abstract][Full Text] [Related]
13. A computational investigation of lift generation and power expenditure of Pratt's roundleaf bat (Hipposideros pratti) in forward flight. Windes P; Fan X; Bender M; Tafti DK; Müller R PLoS One; 2018; 13(11):e0207613. PubMed ID: 30485321 [TBL] [Abstract][Full Text] [Related]
14. Scaling law and enhancement of lift generation of an insect-size hovering flexible wing. Kang CK; Shyy W J R Soc Interface; 2013 Aug; 10(85):20130361. PubMed ID: 23760300 [TBL] [Abstract][Full Text] [Related]
15. Optimal flapping wing for maximum vertical aerodynamic force in hover: twisted or flat? Phan HV; Truong QT; Au TK; Park HC Bioinspir Biomim; 2016 Jul; 11(4):046007. PubMed ID: 27387833 [TBL] [Abstract][Full Text] [Related]
17. The novel aerodynamics of insect flight: applications to micro-air vehicles. Ellington CP J Exp Biol; 1999 Dec; 202(Pt 23):3439-48. PubMed ID: 10562527 [TBL] [Abstract][Full Text] [Related]
18. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. Sun M; Tang J J Exp Biol; 2002 Jan; 205(Pt 1):55-70. PubMed ID: 11818412 [TBL] [Abstract][Full Text] [Related]
19. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing. Phillips N; Knowles K; Bomphrey RJ Bioinspir Biomim; 2015 Oct; 10(5):056020. PubMed ID: 26451802 [TBL] [Abstract][Full Text] [Related]
20. Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight. Wang J; Ren Y; Li C; Dong H Bioinspir Biomim; 2019 Jun; 14(4):046010. PubMed ID: 31096194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]