These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 22629379)

  • 1. A quantitative 3D motility analysis of Trypanosoma brucei by use of digital in-line holographic microscopy.
    Weiße S; Heddergott N; Heydt M; Pflästerer D; Maier T; Haraszti T; Grunze M; Engstler M; Rosenhahn A
    PLoS One; 2012; 7(5):e37296. PubMed ID: 22629379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical trapping reveals propulsion forces, power generation and motility efficiency of the unicellular parasites Trypanosoma brucei brucei.
    Stellamanns E; Uppaluri S; Hochstetter A; Heddergott N; Engstler M; Pfohl T
    Sci Rep; 2014 Oct; 4():6515. PubMed ID: 25269514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-function analysis of dynein light chain 1 identifies viable motility mutants in bloodstream-form Trypanosoma brucei.
    Ralston KS; Kisalu NK; Hill KL
    Eukaryot Cell; 2011 Jul; 10(7):884-94. PubMed ID: 21378260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Microfluidic-Based Microscopy Platform for Continuous Interrogation of Trypanosoma brucei during Environmental Perturbation.
    Voyton CM; Choi J; Qiu Y; Morris MT; Ackroyd PC; Morris JC; Christensen KA
    Biochemistry; 2019 Feb; 58(7):875-882. PubMed ID: 30638014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Analyses of Cytokinesis Regulators in Bloodstream Stage Trypanosoma brucei Parasites Identify Functions and Regulations Specific to the Life Cycle Stage.
    Zhang X; An T; Pham KTM; Lun ZR; Li Z
    mSphere; 2019 May; 4(3):. PubMed ID: 31043517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stage-specific differences in cell cycle control in Trypanosoma brucei revealed by RNA interference of a mitotic cyclin.
    Hammarton TC; Clark J; Douglas F; Boshart M; Mottram JC
    J Biol Chem; 2003 Jun; 278(25):22877-86. PubMed ID: 12682070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trypanosoma brucei: reduction of GPI-phospholipase C protein during differentiation is dependent on replication of newly transformed cells.
    Subramanya S; Armah DA; Mensa-Wilmot K
    Exp Parasitol; 2010 Jul; 125(3):222-9. PubMed ID: 20109448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Species-Specific Adaptations of Trypanosome Morphology and Motility to the Mammalian Host.
    Bargul JL; Jung J; McOdimba FA; Omogo CO; Adung'a VO; Krüger T; Masiga DK; Engstler M
    PLoS Pathog; 2016 Feb; 12(2):e1005448. PubMed ID: 26871910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Propulsion of African trypanosomes is driven by bihelical waves with alternating chirality separated by kinks.
    Rodríguez JA; Lopez MA; Thayer MC; Zhao Y; Oberholzer M; Chang DD; Kisalu NK; Penichet ML; Helguera G; Bruinsma R; Hill KL; Miao J
    Proc Natl Acad Sci U S A; 2009 Nov; 106(46):19322-7. PubMed ID: 19880745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow loading induces oscillatory trajectories in a bloodstream parasite.
    Uppaluri S; Heddergott N; Stellamanns E; Herminghaus S; Zöttl A; Stark H; Engstler M; Pfohl T
    Biophys J; 2012 Sep; 103(6):1162-9. PubMed ID: 22995488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulating the complex cell design of Trypanosoma brucei and its motility.
    Alizadehrad D; Krüger T; Engstler M; Stark H
    PLoS Comput Biol; 2015 Jan; 11(1):e1003967. PubMed ID: 25569823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional studies of an evolutionarily conserved, cytochrome b5 domain protein reveal a specific role in axonemal organisation and the general phenomenon of post-division axonemal growth in trypanosomes.
    Farr H; Gull K
    Cell Motil Cytoskeleton; 2009 Jan; 66(1):24-35. PubMed ID: 19009637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis by flow cytometry of DNA synthesis during the life cycle of African trypanosomes.
    Shapiro SZ; Naessens J; Liesegang B; Moloo SK; Magondu J
    Acta Trop; 1984 Dec; 41(4):313-23. PubMed ID: 6152113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidics-based single cell analysis reveals drug-dependent motility changes in trypanosomes.
    Hochstetter A; Stellamanns E; Deshpande S; Uppaluri S; Engstler M; Pfohl T
    Lab Chip; 2015 Apr; 15(8):1961-8. PubMed ID: 25756872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental adaptations of trypanosome motility to the tsetse fly host environments unravel a multifaceted in vivo microswimmer system.
    Schuster S; Krüger T; Subota I; Thusek S; Rotureau B; Beilhack A; Engstler M
    Elife; 2017 Aug; 6():. PubMed ID: 28807106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA interference mutant induction in vivo demonstrates the essential nature of trypanosome flagellar function during mammalian infection.
    Griffiths S; Portman N; Taylor PR; Gordon S; Ginger ML; Gull K
    Eukaryot Cell; 2007 Jul; 6(7):1248-50. PubMed ID: 17513568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parasites in motion: flagellum-driven cell motility in African trypanosomes.
    Hill KL
    Curr Opin Microbiol; 2010 Aug; 13(4):459-65. PubMed ID: 20591724
    [