BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 22629609)

  • 1. Removal of microcystin-LR from spiked water using either activated carbon or anthracite as filter material.
    Drogui P; Daghrir R; Simard MC; Sauvageau C; Blais JF
    Environ Technol; 2012; 33(4-6):381-91. PubMed ID: 22629609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of chlorine on PAC's ability to adsorb microcystin].
    Liu C; Gao NY; Dong BZ; Liu SQ; Zhao JF
    Huan Jing Ke Xue; 2007 May; 28(5):997-1000. PubMed ID: 17633168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorptive removal of microcystin-LR from surface and wastewater using tyre-based powdered activated carbon: Kinetics and isotherms.
    Mashile PP; Mpupa A; Nomngongo PN
    Toxicon; 2018 Apr; 145():25-31. PubMed ID: 29501826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison and modeling of the adsorption of two microcystin analogues onto powdered activated carbon.
    Cook D; Newcombe G
    Environ Technol; 2008 May; 29(5):525-34. PubMed ID: 18661736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesoporous carbon for efficient removal of microcystin-LR in drinking water sources, Nak-Dong River, South Korea: Application to a field-scale drinking water treatment plant.
    Park JA; Jung SM; Choi JW; Kim JH; Hong S; Lee SH
    Chemosphere; 2018 Feb; 193():883-891. PubMed ID: 29874763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of process variables and natural organic matter on removal of microcystin-LR by PAC-UF.
    Lee J; Walker HW
    Environ Sci Technol; 2006 Dec; 40(23):7336-42. PubMed ID: 17180986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of powdered activated carbon for the adsorption of cylindrospermopsin and microcystin toxins from drinking water supplies.
    Ho L; Lambling P; Bustamante H; Duker P; Newcombe G
    Water Res; 2011 Apr; 45(9):2954-64. PubMed ID: 21459402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A coagulation-powdered activated carbon-ultrafiltration--multiple barrier approach for removing toxins from two Australian cyanobacterial blooms.
    Dixon MB; Richard Y; Ho L; Chow CW; O'Neill BK; Newcombe G
    J Hazard Mater; 2011 Feb; 186(2-3):1553-9. PubMed ID: 21227576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The removal of endocrine disrupting compounds, pharmaceutically activated compounds and cyanobacterial toxins during drinking water preparation using activated carbon--a review.
    Delgado LF; Charles P; Glucina K; Morlay C
    Sci Total Environ; 2012 Oct; 435-436():509-25. PubMed ID: 22885596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of microcystin-LR from drinking water using a bamboo-based charcoal adsorbent modified with chitosan.
    Zhang H; Zhu G; Jia X; Ding Y; Zhang M; Gao Q; Hu C; Xu S
    J Environ Sci (China); 2011; 23(12):1983-8. PubMed ID: 22432328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of intra- and extracellular microcystin by submerged ultrafiltration (UF) membrane combined with coagulation/flocculation and powdered activated carbon (PAC) adsorption.
    Şengül AB; Ersan G; Tüfekçi N
    J Hazard Mater; 2018 Feb; 343():29-35. PubMed ID: 28938156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of microcystin-LR and microcystin-RR by graphene oxide: adsorption and kinetic experiments.
    Pavagadhi S; Tang AL; Sathishkumar M; Loh KP; Balasubramanian R
    Water Res; 2013 Sep; 47(13):4621-9. PubMed ID: 23764611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discriminating and assessing adsorption and biodegradation removal mechanisms during granular activated carbon filtration of microcystin toxins.
    Wang H; Ho L; Lewis DM; Brookes JD; Newcombe G
    Water Res; 2007 Oct; 41(18):4262-70. PubMed ID: 17604809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of cyanotoxins from surface water resources using reusable molecularly imprinted polymer adsorbents.
    Krupadam RJ; Patel GP; Balasubramanian R
    Environ Sci Pollut Res Int; 2012 Jun; 19(5):1841-51. PubMed ID: 22207238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast removal of cyanobacterial toxin microcystin-LR by a low-cytotoxic microgel-Fe(Ⅲ) complex.
    Dai G; Quan C; Zhang X; Liu J; Song L; Gan N
    Water Res; 2012 Apr; 46(5):1482-9. PubMed ID: 22153353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid adsorbent/visible light photocatalyst for the abatement of microcystin-LR in water.
    Długosz M; Kwiecień A; Żmudzki P; Bober B; Krzek J; Bialczyk J; Nowakowska M; Szczubiałka K
    Chem Commun (Camb); 2015 May; 51(36):7649-52. PubMed ID: 25846369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient removal of microcystin-LR by UV-C/H₂O₂ in synthetic and natural water samples.
    He X; Pelaez M; Westrick JA; O'Shea KE; Hiskia A; Triantis T; Kaloudis T; Stefan MI; de la Cruz AA; Dionysiou DD
    Water Res; 2012 Apr; 46(5):1501-10. PubMed ID: 22177771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of different granulated active carbons for removal of Microcystin-LR from contaminated water.
    Bhaskar AS; Jayaraj R; Dangi RS; Prasad GK; Singh B; Rao PV
    J Environ Biol; 2005 Jul; 26(3):511-5. PubMed ID: 16334290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical and biological removal of Microcystin-LR and other water contaminants in a biofilter using Manganese Dioxide coated sand and Graphene sand composites.
    Kumar P; Rehab H; Hegde K; Brar SK; Cledon M; Kermanshahi-Pour A; Vo Duy S; Sauvé S; Surampalli RY
    Sci Total Environ; 2020 Feb; 703():135052. PubMed ID: 31733495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants.
    Hoeger SJ; Hitzfeld BC; Dietrich DR
    Toxicol Appl Pharmacol; 2005 Mar; 203(3):231-42. PubMed ID: 15737677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.