These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 22629946)
1. One-step spray pyrolysis synthesized CuO-carbon composite combined with carboxymethyl cellulose binder as anode for lithium-ion batteries. Zhong C; Wang JZ; Gao XW; Chou SL; Konstantinov K; Liu HK J Nanosci Nanotechnol; 2012 Feb; 12(2):1314-7. PubMed ID: 22629946 [TBL] [Abstract][Full Text] [Related]
2. Novel polymer Li-ion binder carboxymethyl cellulose derivative enhanced electrochemical performance for Li-ion batteries. Qiu L; Shao Z; Wang D; Wang F; Wang W; Wang J Carbohydr Polym; 2014 Nov; 112():532-8. PubMed ID: 25129778 [TBL] [Abstract][Full Text] [Related]
3. Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery. Qiu L; Shao Z; Wang D; Wang W; Wang F; Wang J Carbohydr Polym; 2014 Oct; 111():588-91. PubMed ID: 25037391 [TBL] [Abstract][Full Text] [Related]
4. Comparative Investigation of Water-Based CMC and LA133 Binders for CuO Anodes in High-Performance Lithium-Ion Batteries. Oli N; Choudhary S; Weiner BR; Morell G; Katiyar RS Molecules; 2024 Aug; 29(17):. PubMed ID: 39274961 [TBL] [Abstract][Full Text] [Related]
5. Template-free synthesis of mesoporous hollow CuO microspheres as anode materials for Li-ion batteries. Zhang Z; Che H; Sun J; She X; Chen H; Su F J Nanosci Nanotechnol; 2013 Feb; 13(2):1530-4. PubMed ID: 23646676 [TBL] [Abstract][Full Text] [Related]
6. A cycling robust network binder for high performance Si-based negative electrodes for lithium-ion batteries. Zhang J; Wang N; Zhang W; Fang S; Yu Z; Shi B; Yang J J Colloid Interface Sci; 2020 Oct; 578():452-460. PubMed ID: 32535427 [TBL] [Abstract][Full Text] [Related]
7. Effect of Different Binders on the Electrochemical Performance of Metal Oxide Anode for Lithium-Ion Batteries. Wang R; Feng L; Yang W; Zhang Y; Zhang Y; Bai W; Liu B; Zhang W; Chuan Y; Zheng Z; Guan H Nanoscale Res Lett; 2017 Oct; 12(1):575. PubMed ID: 29086045 [TBL] [Abstract][Full Text] [Related]
8. Study on novel functional materials carboxymethyl cellulose lithium (CMC-Li) improve high-performance lithium-ion battery. Qiu L; Shao Z; Xiang P; Wang D; Zhou Z; Wang F; Wang W; Wang J Carbohydr Polym; 2014 Sep; 110():121-7. PubMed ID: 24906737 [TBL] [Abstract][Full Text] [Related]
9. Improved lithium ion storage performance of Ti Zhang W; Qian M; Luo G; Feng X; Wu C; Qin W J Colloid Interface Sci; 2023 Jul; 641():15-25. PubMed ID: 36924542 [TBL] [Abstract][Full Text] [Related]
10. A New CuO-Fe Di Lecce D; Verrelli R; Campanella D; Marangon V; Hassoun J ChemSusChem; 2017 Apr; 10(7):1607-1615. PubMed ID: 28074612 [TBL] [Abstract][Full Text] [Related]
11. Characteristics and Electrochemical Performance of Si-Carbon Nanofibers Composite as Anode Material for Binder-Free Lithium Secondary Batteries. Hyun Y; Park HK; Park HS; Lee CS J Nanosci Nanotechnol; 2015 Nov; 15(11):8951-60. PubMed ID: 26726625 [TBL] [Abstract][Full Text] [Related]
12. Flexible CuO nanosheets/reduced-graphene oxide composite paper: binder-free anode for high-performance lithium-ion batteries. Liu Y; Wang W; Gu L; Wang Y; Ying Y; Mao Y; Sun L; Peng X ACS Appl Mater Interfaces; 2013 Oct; 5(19):9850-5. PubMed ID: 24010720 [TBL] [Abstract][Full Text] [Related]
13. Fe3O4/Fe/carbon composite and its application as anode material for lithium-ion batteries. Zhao X; Xia D; Zheng K ACS Appl Mater Interfaces; 2012 Mar; 4(3):1350-6. PubMed ID: 22301516 [TBL] [Abstract][Full Text] [Related]
14. Effects of Pyrolysis on High-Capacity Si-Based Anode of Lithium Ion Battery with High Coulombic Efficiency and Long Cycling Life. Tzeng Y; Jhan CY; Wu YH Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159814 [TBL] [Abstract][Full Text] [Related]
15. One-pot facile synthesis of Janus-structured SnO2-CuO composite nanorods and their application as anode materials in Li-ion batteries. Choi SH; Kang YC Nanoscale; 2013 Jun; 5(11):4662-8. PubMed ID: 23615939 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and Electrochemical Performance of Microporous Hollow Carbon from Milkweed Pappus as Cathode Material of Lithium-Sulfur Batteries. Kim JK; Choi Y; Jeong ED; Lee SJ; Kim HG; Chung JM; Kim JS; Lee SY; Bae JS Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296795 [TBL] [Abstract][Full Text] [Related]
17. Design and synthesis of micron-sized spherical aggregates composed of hollow Fe2O3 nanospheres for use in lithium-ion batteries. Cho JS; Hong YJ; Lee JH; Kang YC Nanoscale; 2015 May; 7(18):8361-7. PubMed ID: 25899089 [TBL] [Abstract][Full Text] [Related]
18. Enhanced cycling performance of nanocrystalline Fe3O4/C as anode material for lithium-ion batteries. Lu L; Wang JZ; Gao XW; Zhu XB; Liu HK J Nanosci Nanotechnol; 2012 Feb; 12(2):1246-50. PubMed ID: 22629931 [TBL] [Abstract][Full Text] [Related]
19. Tin/polypyrrole composite anode using sodium carboxymethyl cellulose binder for lithium-ion batteries. Chou SL; Gao XW; Wang JZ; Wexler D; Wang ZX; Chen LQ; Liu HK Dalton Trans; 2011 Dec; 40(48):12801-7. PubMed ID: 21637877 [TBL] [Abstract][Full Text] [Related]
20. Dopamine-grafted heparin as an additive to the commercialized carboxymethyl cellulose/styrene-butadiene rubber binder for practical use of SiO Lee K; Lim S; Go N; Kim J; Mun J; Kim TH Sci Rep; 2018 Jul; 8(1):11322. PubMed ID: 30054557 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]