BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 22629996)

  • 1. Size and morphology controlled lithium manganese oxide on silica sphere with core-shell structure.
    Ryu SH; Ju JH; Cho SW; Ryu KS
    J Nanosci Nanotechnol; 2012 Feb; 12(2):1539-44. PubMed ID: 22629996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile one step synthesis method of spinel LiMn
    Hashem AM; Abbas SM; Hou X; Eid AE; Abdel-Ghany AE
    Heliyon; 2019 Jul; 5(7):e02027. PubMed ID: 31360785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of different shell structures in lithium-rich layered oxides and their influence on electrochemical properties.
    Cao K; Wang K; Shen T; Wang W; Chen D
    RSC Adv; 2018 May; 8(33):18589-18596. PubMed ID: 35541132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Luminescent properties and characterization of Gd2O3:Eu(3+)@SiO2 and Gd2Ti2O7:Eu(3+)@SiO2 core-shell phosphors prepared by a sol-gel process.
    Lin KM; Lin CC; Li YY
    Nanotechnology; 2006 Mar; 17(6):1745-51. PubMed ID: 26558588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and electrochemical performances of co-substituted LiCo(x)Li(x-y)Mn(2-x)O4 cathode materials for the rechargeable lithium ion batteries.
    Mohan P; Kalaignan GP
    J Nanosci Nanotechnol; 2013 Oct; 13(10):6694-700. PubMed ID: 24245131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spinel lithium manganese oxide nanoparticles: unique molten salt synthesis strategy and excellent electrochemical performances.
    Wang X; Zhu J; Liu Y
    J Nanosci Nanotechnol; 2009 Nov; 9(11):6518-22. PubMed ID: 19908558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds.
    Hui C; Shen C; Tian J; Bao L; Ding H; Li C; Tian Y; Shi X; Gao HJ
    Nanoscale; 2011 Feb; 3(2):701-5. PubMed ID: 21103488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen vacancies lead to loss of domain order, particle fracture, and rapid capacity fade in lithium manganospinel (LiMn₂O₄) batteries.
    Hao X; Lin X; Lu W; Bartlett BM
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):10849-57. PubMed ID: 24846300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superparamagnetic gamma-Fe2O3@SiO2 nanoparticles: a novel support for the immobilization of [VO(acac)2].
    Pereira C; Pereira AM; Quaresma P; Tavares PB; Pereira E; Araújo JP; Freire C
    Dalton Trans; 2010 Mar; 39(11):2842-54. PubMed ID: 20200711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core-shell structure.
    Zhao B; Shao G; Fan B; Zhao W; Zhang R
    Phys Chem Chem Phys; 2015 Jan; 17(4):2531-9. PubMed ID: 25494450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The preparation and properties of monodisperse core-shell silica magnetic microspheres.
    Lou MY; Jia QL; Wang DP; Liu B; Huang WH
    J Mater Sci Mater Med; 2008 Jan; 19(1):217-23. PubMed ID: 17597357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of core-shell nanostructures of Co3O4@SiO2 with controlled shell thickness (5-20 nm) and hollow shells of silica.
    Vaidya S; Thaplyal P; Ramanujachary KV; Lofland SE; Ganguli AK
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3405-13. PubMed ID: 21776717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of SiO(x) powder using DC arc plasma.
    Jung CO; Park DW
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1153-8. PubMed ID: 23646592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and high-resolution structural and chemical analysis of iron-manganese-oxide core-shell nanocubes.
    Ullrich A; Rahman MM; Longo P; Horn S
    Sci Rep; 2019 Dec; 9(1):19264. PubMed ID: 31848357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Earthicle: The Design of a Conceptually New Type of Particle.
    Uskoković V; Pernal S; Wu VM
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1305-1321. PubMed ID: 28009506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile Controlled Synthesis of Spinel LiMn
    Hai Y; Zhang Z; Liu H; Liao L; Fan P; Wu Y; Lv G; Mei L
    Front Chem; 2019; 7():437. PubMed ID: 31259169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and luminescent enhancement of Eu3+-doped Y2O3@YOF core-shell nanocrystals.
    Tian Y; Chen B; Hua R; Sun J; Cheng L; Zhong H; Li X; Zhang J; Meng Q; Chen M
    J Nanosci Nanotechnol; 2011 Nov; 11(11):9631-5. PubMed ID: 22413260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel core-shell-structured Li[(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2 via coprecipitation as positive electrode material for lithium secondary batteries.
    Sun YK; Myung ST; Shin HS; Bae YC; Yoon CS
    J Phys Chem B; 2006 Apr; 110(13):6810-5. PubMed ID: 16570989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and Characterization of SiO2@Y2MoO6:Eu3+ Core-Shell Structured Spherical Phosphors by Sol-Gel Process.
    Li GZ; Liu FH; Chu ZS; Wu DM; Yang LB; Li JL; Wang MN; Wang ZL
    J Nanosci Nanotechnol; 2016 Apr; 16(4):3914-20. PubMed ID: 27451737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of Electrochemical Performance of LiMn₂O₄ Spinel Cathode Material by Synergetic Substitution with Ni and S.
    Bakierska M; Świętosławski M; Gajewska M; Kowalczyk A; Piwowarska Z; Chmielarz L; Dziembaj R; Molenda M
    Materials (Basel); 2016 May; 9(5):. PubMed ID: 28773491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.