These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22630037)

  • 1. Gas-borne particles with tunable and highly controlled characteristics for nanotoxicology studies.
    Messing ME; Svensson CR; Pagels J; Meuller BO; Deppert K; Rissler J
    Nanotoxicology; 2013 Sep; 7(6):1052-63. PubMed ID: 22630037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel exposure system for the efficient and controlled deposition of aerosol particles onto cell cultures.
    Savi M; Kalberer M; Lang D; Ryser M; Fierz M; Gaschen A; Ricka J; Geiser M
    Environ Sci Technol; 2008 Aug; 42(15):5667-74. PubMed ID: 18754491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct deposition of gas phase generated aerosol gold nanoparticles into biological fluids--corona formation and particle size shifts.
    Svensson CR; Messing ME; Lundqvist M; Schollin A; Deppert K; Pagels JH; Rissler J; Cedervall T
    PLoS One; 2013; 8(9):e74702. PubMed ID: 24086363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A compact and portable deposition chamber to study nanoparticles in air-exposed tissue.
    Mertes P; Praplan AP; Künzi L; Dommen J; Baltensperger U; Geiser M; Weingartner E; Ricka J; Fierz M; Kalberer M
    J Aerosol Med Pulm Drug Deliv; 2013 Aug; 26(4):228-35. PubMed ID: 23421898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass-mobility characterization of flame-made ZrO2 aerosols: primary particle diameter and extent of aggregation.
    Eggersdorfer ML; Gröhn AJ; Sorensen CM; McMurry PH; Pratsinis SE
    J Colloid Interface Sci; 2012 Dec; 387(1):12-23. PubMed ID: 22959835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silica nanoparticles are less toxic to human lung cells when deposited at the air-liquid interface compared to conventional submerged exposure.
    Panas A; Comouth A; Saathoff H; Leisner T; Al-Rawi M; Simon M; Seemann G; Dössel O; Mülhopt S; Paur HR; Fritsch-Decker S; Weiss C; Diabaté S
    Beilstein J Nanotechnol; 2014; 5():1590-1602. PubMed ID: 25247141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel in situ setup to study the formation of nanoparticles in the gas phase by small angle x-ray scattering.
    Shyjumon I; Rappolt M; Sartori B; Amenitsch H; Laggner P
    Rev Sci Instrum; 2008 Apr; 79(4):043905. PubMed ID: 18447533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerium oxide nanoparticle uptake kinetics from the gas-phase into lung cells in vitro is transport limited.
    Raemy DO; Limbach LK; Rothen-Rutishauser B; Grass RN; Gehr P; Birbaum K; Brandenberger C; Günther D; Stark WJ
    Eur J Pharm Biopharm; 2011 Apr; 77(3):368-75. PubMed ID: 21118721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of heterogeneous chemistry for the characterization of functional groups at the gas/particle interface of soot and TiO2 nanoparticles.
    Setyan A; Sauvain JJ; Rossi MJ
    Phys Chem Chem Phys; 2009 Aug; 11(29):6205-17. PubMed ID: 19606331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method for quantifiable and controlled dosage of particulate matter for in vitro studies: the electrostatic particulate dosage and exposure system (EPDExS).
    Stevens JP; Zahardis J; MacPherson M; Mossman BT; Petrucci GA
    Toxicol In Vitro; 2008 Oct; 22(7):1768-74. PubMed ID: 18682289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the Early Biological Effects of Isoprene-Derived Particulate Matter Enhanced by Anthropogenic Pollutants.
    Surratt JD; Lin YH; Arashiro M; Vizuete WG; Zhang Z; Gold A; Jaspers I; Fry RC
    Res Rep Health Eff Inst; 2019 Mar; 2019(198):1-54. PubMed ID: 31872748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of an air-liquid interface exposure system for assessing toxicity of airborne nanoparticles.
    Latvala S; Hedberg J; Möller L; Odnevall Wallinder I; Karlsson HL; Elihn K
    J Appl Toxicol; 2016 Oct; 36(10):1294-301. PubMed ID: 26935862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of airborne particles from cleaning sprays and their corresponding respiratory deposition fractions.
    Lovén K; Isaxon C; Wierzbicka A; Gudmundsson A
    J Occup Environ Hyg; 2019 Sep; 16(9):656-667. PubMed ID: 31361572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lung deposition of fine and ultrafine particles outdoors and indoors during a cooking event and a no activity period.
    Mitsakou C; Housiadas C; Eleftheriadis K; Vratolis S; Helmis C; Asimakopoulos D
    Indoor Air; 2007 Apr; 17(2):143-52. PubMed ID: 17391237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of retention efficiency of filters against nanoparticles in liquids using an aerosolization technique.
    Ling TY; Wang J; Pui DY
    Environ Sci Technol; 2010 Jan; 44(2):774-9. PubMed ID: 20000703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-dependent mixing characteristics of volatile and nonvolatile components in diesel exhaust aerosols.
    Sakurai H; Park K; McMurry PH; Zarling DD; Kittelson DB; Ziemann PJ
    Environ Sci Technol; 2003 Dec; 37(24):5487-95. PubMed ID: 14717155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular dose of partly soluble Cu particle aerosols at the air-liquid interface using an in vitro lung cell exposure system.
    Elihn K; Cronholm P; Karlsson HL; Midander K; Odnevall Wallinder I; Möller L
    J Aerosol Med Pulm Drug Deliv; 2013 Apr; 26(2):84-93. PubMed ID: 22889118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of particle morphology on performance of an electrostatic air-liquid interface cell exposure system for nanotoxicology studies.
    Hsiao TC; Chuang HC; Lin JC; Cheng TJ; Chou LT
    Nanotoxicology; 2021 May; 15(4):433-445. PubMed ID: 33378224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.