BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 22630785)

  • 1. Regulation of mitochondrial permeability transition pore by PINK1.
    Gautier CA; Giaime E; Caballero E; Núñez L; Song Z; Chan D; Villalobos C; Shen J
    Mol Neurodegener; 2012 May; 7():22. PubMed ID: 22630785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dopamine induced neurodegeneration in a PINK1 model of Parkinson's disease.
    Gandhi S; Vaarmann A; Yao Z; Duchen MR; Wood NW; Abramov AY
    PLoS One; 2012; 7(5):e37564. PubMed ID: 22662171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death.
    Gandhi S; Wood-Kaczmar A; Yao Z; Plun-Favreau H; Deas E; Klupsch K; Downward J; Latchman DS; Tabrizi SJ; Wood NW; Duchen MR; Abramov AY
    Mol Cell; 2009 Mar; 33(5):627-38. PubMed ID: 19285945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of DJ-1 does not affect mitochondrial respiration but increases ROS production and mitochondrial permeability transition pore opening.
    Giaime E; Yamaguchi H; Gautier CA; Kitada T; Shen J
    PLoS One; 2012; 7(7):e40501. PubMed ID: 22792356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice.
    Akundi RS; Huang Z; Eason J; Pandya JD; Zhi L; Cass WA; Sullivan PG; Büeler H
    PLoS One; 2011 Jan; 6(1):e16038. PubMed ID: 21249202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of PINK1 increases the heart's vulnerability to ischemia-reperfusion injury.
    Siddall HK; Yellon DM; Ong SB; Mukherjee UA; Burke N; Hall AR; Angelova PR; Ludtmann MH; Deas E; Davidson SM; Mocanu MM; Hausenloy DJ
    PLoS One; 2013; 8(4):e62400. PubMed ID: 23638067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial membrane potential decrease caused by loss of PINK1 is not due to proton leak, but to respiratory chain defects.
    Amo T; Sato S; Saiki S; Wolf AM; Toyomizu M; Gautier CA; Shen J; Ohta S; Hattori N
    Neurobiol Dis; 2011 Jan; 41(1):111-8. PubMed ID: 20817094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silencing of PINK1 induces mitophagy via mitochondrial permeability transition in dopaminergic MN9D cells.
    Cui T; Fan C; Gu L; Gao H; Liu Q; Zhang T; Qi Z; Zhao C; Zhao H; Cai Q; Yang H
    Brain Res; 2011 Jun; 1394():1-13. PubMed ID: 21262209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress.
    Gautier CA; Kitada T; Shen J
    Proc Natl Acad Sci U S A; 2008 Aug; 105(32):11364-9. PubMed ID: 18687901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of the mitochondrial kinase PINK1 does not alter platelet function.
    Walsh TG; van den Bosch MTJ; Lewis KE; Williams CM; Poole AW
    Sci Rep; 2018 Sep; 8(1):14377. PubMed ID: 30258205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PINK1 mutants associated with recessive Parkinson's disease are defective in inhibiting mitochondrial release of cytochrome c.
    Wang HL; Chou AH; Yeh TH; Li AH; Chen YL; Kuo YL; Tsai SR; Yu ST
    Neurobiol Dis; 2007 Nov; 28(2):216-26. PubMed ID: 17707122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PINK1-mediated phosphorylation of LETM1 regulates mitochondrial calcium transport and protects neurons against mitochondrial stress.
    Huang E; Qu D; Huang T; Rizzi N; Boonying W; Krolak D; Ciana P; Woulfe J; Klein C; Slack RS; Figeys D; Park DS
    Nat Commun; 2017 Nov; 8(1):1399. PubMed ID: 29123128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell metabolism affects selective vulnerability in PINK1-associated Parkinson's disease.
    Yao Z; Gandhi S; Burchell VS; Plun-Favreau H; Wood NW; Abramov AY
    J Cell Sci; 2011 Dec; 124(Pt 24):4194-202. PubMed ID: 22223879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic ablation of calcium-independent phospholipase A(2)γ (iPLA(2)γ) attenuates calcium-induced opening of the mitochondrial permeability transition pore and resultant cytochrome c release.
    Moon SH; Jenkins CM; Kiebish MA; Sims HF; Mancuso DJ; Gross RW
    J Biol Chem; 2012 Aug; 287(35):29837-50. PubMed ID: 22778252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial permeability transition pore induces mitochondria injury in Huntington disease.
    Quintanilla RA; Jin YN; von Bernhardi R; Johnson GV
    Mol Neurodegener; 2013 Dec; 8():45. PubMed ID: 24330821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioenergetic consequences of PINK1 mutations in Parkinson disease.
    Abramov AY; Gegg M; Grunewald A; Wood NW; Klein C; Schapira AH
    PLoS One; 2011; 6(10):e25622. PubMed ID: 22043288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detailed analysis of mitochondrial respiratory chain defects caused by loss of PINK1.
    Amo T; Saiki S; Sawayama T; Sato S; Hattori N
    Neurosci Lett; 2014 Sep; 580():37-40. PubMed ID: 25092611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of Pink1 modulates synaptic mitochondrial bioenergetics in the rat striatum prior to motor symptoms: concomitant complex I respiratory defects and increased complex II-mediated respiration.
    Stauch KL; Villeneuve LM; Purnell PR; Ottemann BM; Emanuel K; Fox HS
    Proteomics Clin Appl; 2016 Dec; 10(12):1205-1217. PubMed ID: 27568932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial permeability transition pore component cyclophilin D distinguishes nigrostriatal dopaminergic death paradigms in the MPTP mouse model of Parkinson's disease.
    Thomas B; Banerjee R; Starkova NN; Zhang SF; Calingasan NY; Yang L; Wille E; Lorenzo BJ; Ho DJ; Beal MF; Starkov A
    Antioxid Redox Signal; 2012 May; 16(9):855-68. PubMed ID: 21529244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impaired flickering of the permeability transition pore causes SPG7 spastic paraplegia.
    Sambri I; Massa F; Gullo F; Meneghini S; Cassina L; Carraro M; Dina G; Quattrini A; Patanella L; Carissimo A; Iuliano A; Santorelli F; Codazzi F; Grohovaz F; Bernardi P; Becchetti A; Casari G
    EBioMedicine; 2020 Nov; 61():103050. PubMed ID: 33045469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.