These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 226309)

  • 1. Integrative recombination of bacteriophage lambda: requirement for supertwisted DNA in vivo and characterization of int.
    Kikuchi Y; Nash H
    Cold Spring Harb Symp Quant Biol; 1979; 43 Pt 2():1099-109. PubMed ID: 226309
    [No Abstract]   [Full Text] [Related]  

  • 2. The form of the DNA substrate required for excisive recombination of bacteriophage lambda.
    Abremski K; Gottesman S
    J Mol Biol; 1979 Jul; 131(3):637-49. PubMed ID: 229232
    [No Abstract]   [Full Text] [Related]  

  • 3. Strand exchange in lambda integrative recombination: genetics, biochemistry, and models.
    Nash HA; Mizuuchi K; Enquist LW; Weisberg RA
    Cold Spring Harb Symp Quant Biol; 1981; 45 Pt 1():417-28. PubMed ID: 6271487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro study of illegitimate recombination: involvement of DNA gyrase.
    Ikeda H; Moriya K; Matsumoto T
    Cold Spring Harb Symp Quant Biol; 1981; 45 Pt 1():399-408. PubMed ID: 6271485
    [No Abstract]   [Full Text] [Related]  

  • 5. Integrative recombination of bacteriophage lambda: in vitro study of the intermolecular reaction.
    Mizuuchi K; Mizuuchi M
    Cold Spring Harb Symp Quant Biol; 1979; 43 Pt 2():1111-4. PubMed ID: 158463
    [No Abstract]   [Full Text] [Related]  

  • 6. The lambda phage att site: functional limits and interaction with Int protein.
    Hsu PL; Ross W; Landy A
    Nature; 1980 May; 285(5760):85-91. PubMed ID: 6246439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early steps in genetic recombination induced by damaged DNA: cutting in trans in E coli cells and in protein extracts.
    Howard-Flanders P; Cassuto E; Ross P
    Cold Spring Harb Symp Quant Biol; 1979; 43 Pt 2():1073-82. PubMed ID: 158461
    [No Abstract]   [Full Text] [Related]  

  • 8. Structure and function of the phage lambda att site: size, int-binding sites, and location of the crossover point.
    Mizuuchi K; Weisberg R; Enquist L; Mizuuchi M; Buraczynska M; Foeller C; Hsu PL; Ross W; Landy A
    Cold Spring Harb Symp Quant Biol; 1981; 45 Pt 1():429-37. PubMed ID: 6457725
    [No Abstract]   [Full Text] [Related]  

  • 9. Quantitative analysis of the contributions of enzyme and DNA to the structure of lambda integrative recombinants.
    Spengler SJ; Stasiak A; Stasiak AZ; Cozzarelli NR
    Cold Spring Harb Symp Quant Biol; 1984; 49():745-9. PubMed ID: 6099256
    [No Abstract]   [Full Text] [Related]  

  • 10. Use of site-specific recombination as a probe of DNA structure and metabolism in vivo.
    Bliska JB; Cozzarelli NR
    J Mol Biol; 1987 Mar; 194(2):205-18. PubMed ID: 3039150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specific recombination functions of bacteriophage lambda: DNA sequence of regulatory regions and overlapping structural genes for Int and Xis.
    Hoess RH; Foeller C; Bidwell K; Landy A
    Proc Natl Acad Sci U S A; 1980 May; 77(5):2482-6. PubMed ID: 6446713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involement of supertwisted DNA in integrative recombination of bacteriophage lambda.
    Mizuuchi K; Gellert M; Nash HA
    J Mol Biol; 1978 May; 121(3):375-92. PubMed ID: 353288
    [No Abstract]   [Full Text] [Related]  

  • 13. Directional control of site-specific recombination by bacteriophage lambda. Evidence that a binding site for Int protein far from the crossover point is required for integrative but not excisive recombination.
    Winoto A; Chung S; Abraham J; Echols H
    J Mol Biol; 1986 Dec; 192(3):677-80. PubMed ID: 3031315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lambda site-specific recombination: the att site.
    Gottesman S
    Cell; 1981 Sep; 25(3):585-6. PubMed ID: 6456816
    [No Abstract]   [Full Text] [Related]  

  • 15. Site-specific recombination of bacteriophage lambda: the role of host gene products.
    Miller HI; Kikuchi A; Nash HA; Weisberg RA; Friedman DI
    Cold Spring Harb Symp Quant Biol; 1979; 43 Pt 2():1121-6. PubMed ID: 158465
    [No Abstract]   [Full Text] [Related]  

  • 16. int-h: An int mutation of phage lambda that enhances site-specific recombination.
    Miller HI; Mozola MA; Friedman DI
    Cell; 1980 Jul; 20(3):721-9. PubMed ID: 6448091
    [No Abstract]   [Full Text] [Related]  

  • 17. The stereostructure of knots and catenanes produced by phage lambda integrative recombination: implications for mechanism and DNA structure.
    Spengler SJ; Stasiak A; Cozzarelli NR
    Cell; 1985 Aug; 42(1):325-34. PubMed ID: 3160481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of directionality in lambda site specific recombination.
    Bushman W; Thompson JF; Vargas L; Landy A
    Science; 1985 Nov; 230(4728):906-11. PubMed ID: 2932798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nicking-closing activity associated with bacteriophage lambda int gene product.
    Kikuchi Y; Nash HA
    Proc Natl Acad Sci U S A; 1979 Aug; 76(8):3760-4. PubMed ID: 226979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resolution of synthetic att-site Holliday structures by the integrase protein of bacteriophage lambda.
    Hsu PL; Landy A
    Nature; 1984 Oct 25-31; 311(5988):721-6. PubMed ID: 6092961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.